NUMERICAL LINEAR ALGEBRA
Anno accademico 2020/2021 - 3° anno - Curriculum APPLICATIVOCrediti: 6
Organizzazione didattica: 150 ore d'impegno totale, 108 di studio individuale, 42 di lezione frontale
Semestre: 2°
Obiettivi formativi
Conoscenza e capacità di comprensione (knowledge and understanding)
Acquisizione di tecniche numeriche avanzate e scrittura dei relativi codici per la risoluzione numerica dei principali problemi dell’Algebra Lineare. In particolare lo studente familiarizzerà con le matrici e la risoluzione dei sistemi lineari con tecniche iterative basate su metodi di Krylov. Imparerà ad usare tecniche di calcolo di autovalori ed autovettori con applicazioni pratiche che possono essere approfondite con seminari, scelti dagli studenti o dalla docente. I metodi saranno estesi alla decomposizione a valori singolari per matrici rettangolari, alle tecniche di precondizionamento per sfruttare alcune caratteristiche tipiche dei metodi iterativi per ottimizzare tali metodi e allo studio approfondito del metodo dei minimi quadrati. Saranno inoltre richiamate e approfondite le tecniche acquisite in altri insegnamenti per la risoluzione dei sistemi lineari.
Capacità di applicare conoscenza e comprensione (applying knowledge and understanding)
Durante il corso si svilupperanno dei codici in linguaggio Matlab per la scrittura di brevi codici relativi ai vari metodi. Tali codici saranno svolti e commentati in classe (eventualmente online) e, qualora il tempo a disposizione non fosse sufficiente, verranno assegnati come compiti a casa e successivamente analizzati e corretti in classe. La docente esorterà gli studenti a scrivere i codici riunendosi in gruppo, sia in classe che a casa. Nel caso di lezioni online si provvederà a formare dei gruppi di studio online per la collaborazione tra gli studenti.
Autonomia di giudizio (making judgements)
Le attività di laboratorio saranno per lo studente occasione per sviluppare autonomia di giudizio. Qualora non fosse possibile usufruire dei laboratori informatici, sarà data la possibilità agli studenti di utilizzare i propri strumenti informatici fornendo una versione libera (Octave) del Matlab.
Abilità comunicative
Gli elaborati previsti saranno discussi e analizzati insieme allo studente.
Capacità di apprendimento (learning skills)
Durante il corso sarà dato spazio alla discussione sulla distribuzione del carico didattico suddividendo in maniera proporzionata il lavoro svolto in classe e quello dedicato allo studio personale.
Modalità di svolgimento dell'insegnamento
Il corso sarà svolto con l'ausilio di slides che saranno messe online a disposizione dello studente. Saranno inoltre svolti numerosi esercizi alla lavagna (tavoletta grafica nel caso di lezioni online) ed esaminati codici numerici già scritti o, eventualmente, da scrivere a cura dello studente. Si prevede che una parte del corso, fino ad un massimo di 3 CFU, possa essere svolto da un docente esterno al CdL, come attività seminariale di argomenti specialistici. Di ciò verrà data comunicazione/conferma all'inizio dello svolgimento delle lezioni.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
Prerequisiti richiesti
Esame di Calcolo Numerico.
Frequenza lezioni
Fortemente consigliata
Contenuti del corso
Richiami delle proprietà delle matrici. Richiami di Matlab. Codici su: risoluzione sistemi lineari con eliminazione di gauss con pivot parziale, metodo di Gram-Schmidt modificato, basicILU, ILUp, fattorizzazione QR, Gerschgorin, metodi delle potenze e potenze inverse, successioni di Sturm.
Analisi degli errori: condizionamento e stabilità, errori a priori e a posteriori, ordine di convergenza. Discretizzazione di derivate con differenze finite centrali.
Minimi quadrati: problema discreto e sistemi lineari sovradeterminati, problema continuo, spazi con prodotto interno, equazioni normali, metodo di ortogonalizzazione di Gram-Schmidt e di Gram-Schmidt modificato, relazione di ricorrenza dei polinomi ortogonali, polinomi di Legendre e di Chebichev.
Trasformate di Fourier: soluzione dell’equazione di Poisson 1D e Fast Fourier Transform. (Tale argomento sarà svolto solo se di interesse per i frequentanti e/o se c'è sufficiente tempo)
Metodi diretti per sistemi lineari: richiami del Meg con e senza pivot, fattorizzazione QR.
Metodi iterativi per sistemi lineari: richiami dei metodi di Jacobi e Gauss-Seidel, SOR, SSOR, precondizionatori, metodi alle differenze finite per PDE ellittiche, metodi di Richardson stazionari e non stazionari, spazi di Krylov. Metodo QR con e senza shift. Metodi di Householder e Givens. Metodo di Arnoldi per la costruzione di una base negli spazi di Krylov, metodi FOM e GMRES. Metodi del gradiente e del gradiente coniugato.
Decomposizione ai valori singolari: teoria, proprietà, applicazioni, relazione coi sistemi dinamici.
Autovalori ed autovettori: Condizionamento e teorema di Bauer-Fike, metodi delle potenze e delle potenze inverse, trasformazioni di similarità, metodi di Householder per matrici piene e di Givens per matrici sparse, autovalori per matrici non simmetriche e calcolo del polinomio caratteristico per una matrice di Hessemberg, autovalori per matrici simmetriche e relazione di ricorrenza del polinomio caratteristico per matrici tridiagonali simmetriche, metodi di MacLaurin e Laguerre per la localizzazione degli autovalori, regola dei segni di Cartesio e metodo delle successioni di Sturm per la numerazione delle radici di un polinomio. Metodo di Jacobi.
Testi di riferimento
1. A.Quarteroni, R.Sacco, F.Saleri Matematica Numerica, Springer 1999.
2. G.Naldi, L.Pareschi Matlab: concetti e progetti, Apogeo 2002.
3. J.W.Demmel Applied Numerical Linear Algebra
4. L.N. Trefethen, D.Bau Numerical Linear Algebra
Programmazione del corso
Argomenti | Riferimenti testi | |
---|---|---|
1 | Raffinamenti per la soluzione dei sistemi lineari con metodi diretti. | 1,2,3,4 |
2 | Fattorizzazione QR. | 1,2,3,4 |
3 | Minimi quadrati | 1,2 |
4 | Metodi iterativi per sistemi lineari | 1,2,3,4 |
5 | Autovalori ed autovettori di matrici quadrate. | 1,2,3,4 |
6 | Tecniche basate sulla decomposizione della matrice e metodi di Krylov | 3,4 |
7 | Tecniche di precondizionamento. | |
8 | Decomposizione SVD | 3,4 |
Verifica dell'apprendimento
Modalità di verifica dell'apprendimento
E' prevista una prova di fine corso che prevede l'esposizione in classe di un argomento, a scelta dello studente, sotto forma di seminario. Lo studente che supera la prova di fine corso dovrà sostenere un esame orale su tutti gli argomenti del corso, con una eventuale discussione dei codici in Matlab visti in classe/online. Lo studente che non ha seguito il corso, o che non ha superato la prova di fine corso, dovrà scrivere e presentare dei codici in Matlab da concordare con la docente.
La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.
Learning assessment may also be carried out on line, should the conditions require it.
Esempi di domande e/o esercizi frequenti
Condizioni di convergenza di metodi iterativi per la risoluzione di un sistema lineare e confronto della velocità e complessità computazionale tra i vari metodi, principali tecniche per la ricerca degli autovalori di una matrice quadrata