RICERCA OPERATIVA
Anno accademico 2021/2022 - 3° annoCrediti: 9
Organizzazione didattica: 225 ore d'impegno totale, 152 di studio individuale, 49 di lezione frontale, 24 di esercitazione
Semestre: 1°
Obiettivi formativi
Lo studente acquisirà la capacità di formulare in termini matematici problemi di massimizzazione dei profitti e minimizzazione dei costi, di ottimizzazione delle risorse, di equilibrio del traffico su reti e di giochi tra due persone a somma nulla.
In particolare, il corso di Ricerca Operativa si propone i seguenti obiettivi:
- formulare un problema di gestione aziendale in termini matematici;
- risolvere problemi di ottimizzazione lineare mediante algoritmi numerici;
- affrontare problemi di programmazione lineare intera e intera 0-1;
- determinare la distribuzione di equilibrio per una rete stradale, fisica, aziendale, ... mediante la soluzione di una disequazione variazionale;
- trovare la soluzione di un gioco a somma nulla tra due giocatori nell'ambito delle strategie pure o miste.
Conoscenza e capacità di comprensione (knowledge and understanding):
Alla fine del corso di Ricerca Operativa, lo studente, oltre ad aver acquisito le conoscenze e le capacità di base nell’ambito della programmazione e modellizzazione matematica, dimostrerà di:
- saper trasformare vincoli concreti in disequazioni/equazioni e situazioni reali in problemi di ottimizzazione;
- possedere conoscenze e capacità di comprensione di testi.
Capacità di applicare conoscenza e comprensione (applying knowledge and understanding):
Le conoscenze teoriche e pratiche acquisite durante il corso permetteranno allo studente di:
- analizzare criticamente varie situazioni aziendali;
- proporre soluzioni ottimali a problemi complessi;
- identificare l'essenza di un problema e applicare principi generali a casi specifici.
Autonomia di giudizio (making judgements):
Lo studente, in virtù della formazione acquisita, anche di tipo analitico-quantitativo, sarà in grado di analizzare ed interpretare criticamente i dati forniti.
Abilità comunicative (communication skills):
Alla fine del corso di Ricerca Operativa lo studente sarà in grado di:
- trasmettere la propria esperienza e conoscenza ad altri;
- confrontarsi con gli altri, specialmente nell'elaborazione di progetti in cui si lavora in gruppo.
Capacità di apprendimento (learning skills):
Lo studente avrà acquisito capacità di apprendere, anche in modo autonomo, ulteriori conoscenze sui problemi di matematica applicata. Tali capacità di apprendimento gli consentiranno di proseguire gli studi matematici con maggiore autonomia.
Modalità di svolgimento dell'insegnamento
L'insegnamento verrà svolto mediante lezioni frontali ed esercitazioni in aula e presso i laboratori informatici.
Qualora l'insegnamento venisse impartito in modalità mista o a distanza potranno essere introdotte le necessarie variazioni rispetto a quanto dichiarato in precedenza, al fine di rispettare il programma previsto e riportato nel syllabus.
Informazioni per studenti con disabilità e/o DSA
A garanzia di pari opportunità e nel rispetto delle leggi vigenti, gli studenti interessati possono chiedere un colloquio personale in modo da programmare eventuali misure compensative e/o dispensative, in base agli obiettivi didattici ed alle specifiche esigenze. E' possibile rivolgersi anche al docente referente CInAP (Centro per l’integrazione Attiva e Partecipata - Servizi per le Disabilità e/o i DSA) del nostro Dipartimento, prof. Filippo Stanco.
Prerequisiti richiesti
Per sostenere l'esame di Ricerca Operativa occorre aver sostenuto gli esami degli insegnamenti di Analisi Matematica 1 e Geometria 1
Frequenza lezioni
La frequenza è fortemente consigliata
Contenuti del corso
Programmazione Lineare: metodo del simplesso, dualità, geometria della Programmazione Lineare, analisi di stabilità (circa 26 ore).
Programmazione Lineare Intera: il rilassamento continuo, il metodo del Branch & Bound (circa 4 ore).
Programmazione Lineare Intera 0-1: il problema dello zaino (circa 4 ore).
Disequazioni variazionali: esistenza, caratterizzazione e unicità della proiezione su un convesso, teoremi di esistenza e unicità della soluzione di disequazioni variazionali (circa 8 ore).
Reti di traffico: definizioni, principio di equilibrio di Wardrop, caratterizzazione mediante disequazione variazionale, metodo diretto per il calcolo della soluzione, metodo delle proiezioni (circa 14 ore).
Teoria dei giochi: strategie pure e miste, Teorema di Von Neumann (circa 8 ore).
Cenni di ottimizzazione nonlineare: teoria lagrangiana e moltiplicatori KKT (circa 9 ore).
Testi di riferimento
- L. Daboni, P. Malesani, P. Manca, G. Ottaviani, F. Ricci, G. Sommi, “Ricerca Operativa”, Zanichelli, Bologna, 1975.
- M.L. De Cesare, M.R. Maddalena, “Introduzione alla Programmazione Lineare”, Giappichelli Editore, 2001.
- Dispense su STUDIUM
Programmazione del corso
Argomenti | Riferimenti testi | |
---|---|---|
1 | Il metodo del simplesso | 1 |
2 | La ricerca della base in due fasi | 1 |
3 | La geometria della PL | 1 |
4 | Dualità in PL | 1 |
5 | Calcolo della soluzione ottima del problema duale | 1 |
6 | Interpretazione duale dei problemi di PL | 1 |
7 | Analisi di sensitività | 1 |
8 | Il metodo del Branch & Bound | 2 |
9 | Il problema dello zaino | 2 |
10 | Teorema della proiezione su un convesso chiuso | 3 |
11 | Teoremi di esistenza e unicità delle soluzioni di una disequazione variazionale | 3 |
12 | Reti di traffico | 3 |
13 | Teorema di Smith | 3 |
14 | Metodo diretto per il calcolo della soluzione di una disequazione variazionale | 3 |
15 | Metodo delle proiezioni | 3 |
16 | Teoria Lagrangiana | 3 |
17 | Moltiplicatori KKT | 3 |
18 | Teorema di Von Neumann | 1 |
19 | Riduzione di un gioco ad una coppia di problemi duali | 1 |
Verifica dell'apprendimento
Modalità di verifica dell'apprendimento
A metà corso è prevista una prova di autovalutazione, che consiste nello svolgimento di alcuni esercizi relativi alla formulazione e alla risoluzione di problemi di Programmazione Lineare.
L'esame finale consiste in una prova orale durante la quale il candidato è invitato anche a risolvere un esercizio numerico. Il voto finale viene stabilito sulla base delle risposte scritte e orali date dal candidato durante il colloquio finale.
La verifica dell’apprendimento potrà essere effettuata anche per via telematica, qualora le condizioni lo dovessero richiedere.
Esempi di domande e/o esercizi frequenti
Esempi di domande:
Si presentino i tre casi del metodo del simplesso.
Si dimostri il teorema fondamentale della dualità.
Si dimostri la caratterizzazione della proiezione su un convesso.
Si dimostri il primo teorema di esistenza delle soluzioni di una disequazione variazionale.
Si dimostri il teorema di Von Neumann.
Si presenti il metodo del Branch & Bound.
Si dimostri il teorema di Smith.
Si presenti il problema dello zaino.
Esercizi frequenti:
alcuni esercizi assegnati negli anni precedenti si possono trovare su STUDIUM http://studium.unict.it.