COMPLEMENTI DI ANALISI MATEMATICA
Anno accademico 2019/2020 - 3° anno - Curriculum GENERALECrediti: 6
Organizzazione didattica: 150 ore d'impegno totale, 103 di studio individuale, 35 di lezione frontale, 12 di esercitazione
Semestre: 2°
Obiettivi formativi
L'obiettivo principale del corso è quello di mostrare come i contenuti di Analisi matematica I e II appresi dallo studente in ambito euclideo possano essere estesi al generale contesto degli spazi di Banach, mettendo in luce, in particolare, alcune significative applicazioni di tali estensioni.
Nel dettaglio, declinati secondo i descrittori di Dublino, gli obiettivi sono i seguenti:
Conoscenza e capacità di comprensione (knowledge and understanding): lo studente imparerà ad utilizzare nel contesto degli spazi di Banach i metodi appresi nei corsi di Analisi matemnatica I e II.
Capacità di applicare conoscenza e comprensione (applying knowledge and understanding): lo studente sarà guidato nella capacità di individuare da sè applicazioni dei risultati generali man mano stabiliti.
Autonomia di giudizio (making judgements): lo studente verrà stimolato a studiare da sè alcuni risultati non sviluppati durante le lezioni.
Abilità comunicative (communication skills): lo studente imparerà ad esporre in maniera chiara, rigorosa e concisa.
Capacità di apprendimento (learning skills): lo studente sarà in grado di affrontare esercizi e trovare da sè dimostrazioni di risultati semplici.
Modalità di svolgimento dell'insegnamento
L'insegnamento si svolgerà attraverso lezioni frontali.
Prerequisiti richiesti
I prerequisiti richiesti si possono individuare nei contenuti dei corsi di Analisi matematica I e II.
Frequenza lezioni
La frequenza alle lezioni è fortemente consigliata.
Contenuti del corso
Calcolo differenziale negli spazi di Banach. Nozioni di base sugli spazi di Banach. Operatori lineari e continui tra spazi di Banach. Operatori differenziabili. Teorema di Lagrange e sue applicazioni. Diffeomorfismi di classe C^1. Teorema d'inversione locale. Teorema sulle funzioni implicite. Derivate d'ordine superiore. Formula di Taylor. Estremi locali di funzioni reali definite in uno spazio di Banach. Condizioni necessarie e condizioni sufficienti del primo e del secondo ordine.
Calcolo integrale per funzioni a valori in spazi di Banach. Funzioni integrabili secondo Riemann. Integrale di Riemann. Funzioni fortemente misurabili. Funzioni integrabili secondo Bochner. Integrale di Bochner. Teorema della media. Successioni di funzioni integrabili secondo Bochner. Teorema della convergenza dominata.
Equazioni differenziali ordinarie in spazi di Banach. Problema di Cauchy. Teorema di esistenza di Peano. Teorema di non esistenza di Godunov. Teorema di esistenza ed unicità. Equazioni differenziali lineari. Applicazioni ai sistemi di infinite equazioni differenziali ordinarie. Applicazioni ad alcune classi di equazioni differenziali a derivate parziali.
Testi di riferimento
1. H. Cartan, Differential calculus on normed spaces: a course in Analysis, 2017.
2. E. Hille - R. S. Phillips, Functional analysis and semi-groups, American Mathematical Society, 1957.
Il docente fornirà inoltre alcuni appunti che saranno pubblicati sulla pagina Studium del corso.
Programmazione del corso
Argomenti | Riferimenti testi | |
---|---|---|
1 | Calcolo differenziale negli spazi di Banach (16 ore) | 1, appunti |
2 | Calcolo integrale per funzioni a valori in spazi di Banach (16 ore) | 2, appunti |
3 | Equazioni differenziali ordinarie in spazi di Banach (15 ore) | 1, appunti |
Verifica dell'apprendimento
Modalità di verifica dell'apprendimento
L'esame consiste in una prova orale nella quale allo studente sarà richiesto di esporre alcune definizioni e alcuni teoremi (enunciato e dimostrazione).
Esempi di domande e/o esercizi frequenti
Operatori differenziabili
Funzioni integrabili secondo Bochner
Sistemi di infinite equazioni differenziali ordinarie