Seguici su
Cerca

FISICA GENERALE I

Anno accademico 2019/2020 - 2° anno
Docente: Rossella Caruso
Crediti: 9
Organizzazione didattica: 225 ore d'impegno totale, 152 di studio individuale, 49 di lezione frontale, 24 di esercitazione
Semestre:

Obiettivi formativi

Lo studente acquisirà le nozioni fondamentali per la comprensione della meccanica classica, dei fenomeni ondulatori, della meccanica dei fluidi, di
fenomeni termici in fluidi e solidi. Inoltre, mediante esercizi e problemi da risolvere in aula e a casa, lo studente sarà abituato alla risoluzione di
problemi concreti. Lo studente che avrà acquisito gli argomenti e le metodologie del corso, sarà in grado di affrontare e risolvere problematiche di
vario genere tramite un approccio logico-scientifico. In particolare, il corso si propone i seguenti obiettivi:

  • conoscenza e capacità di comprensione (knowledge and understanding): lo studente sarà introdotto alla conoscenza di base delle leggi della fisica classica (meccanica, fluidi e termodinamica) . Lo studente svilupperà la capacità di comprensione dei fenomeni fisici più importanti legati al programma del corso.
  • capacità di applicare conoscenza e comprensione (applying knowledge and understanding): lo studente sarà avviato ad una applicazione in ambiti pratici delle conoscenze acquisite, con continui esempi di fisica applicata per la comprensione del mondo reale.
  • autonomia di giudizio (making judgements): lo studente verrà indotto ad una analisi critica del livello di conoscenza acquisito, spingendolo ad una autovalutazione delle proprie conoscenze e capacità, cercando di sviluppare un’autonomia di giudizio sugli obiettivi raggiunti.
  • abilità comunicative (communication skills): l’interazione con il docente e con i colleghi saranno stimolate per incrementare le capacità comunicative degli studenti.

Modalità di svolgimento dell'insegnamento

Lezioni frontali sugli argomenti del programma svolte dal docente interamente alla lavagna; solamente le prime due lezioni di introduzione sono svolte con l'ausilio di slides proiettate alla lavagna luminosa e lasciate poi agli studenti sulla piattaforma Studium. Ciascuna lezione frontale ha la durata di 2 ore piene con un breve intervallo di circa 10 minuti circa tra un'ora e l'altra.

Alle lezioni forntali si aggiungono le lezioni di Esercitazioni, svolte anche esse dal docente alla lavagna, con la presentazione generale della metodologia di svolgimento e con la risoluzione di più esercizi sull'argomento; agli studenti verrà richiesto di affrontare poi esercizi particolari per conto proprio e svolgerli alla lavagna nella lezione successiva.

Le lezioni di Esercitazioni sono corredate di dispense con una raccolta di problemi, suddivisi per argomenti, assegnati nei compiti scritti di Fisica 1 nel corso dei vari anni accademici di insegnamento, da svolgere in aula o a casa, molti dei quali forniti con soluzioni.


Prerequisiti richiesti

Nozioni di algebra elementare e lineare (operazioni, risoluzione di equazioni di I e II grado, risoluzione di sistemi lineari di equazioni); nozioni di trigonometria (funzioni e formule trigonometriche); nozioni di algebra vettoriale; contenuti del corso di Analisi Matematica 1, nozioni sulle equazioni differenziali del I e II ordine.


Frequenza lezioni

Fortemente raccomandata


Contenuti del corso

0) Introduzione

Il metodo scientifico in Fisica. Leggi e principi. Definizione operativa di una grandezza fisica; grandezze fisiche fondamentali e derivate, dirette e indirette; analisi dimensionale delle grandezze fisiche; le tre grandezze fisiche fondamentali in Meccanica: massa, spazio e tempo e loro unità di misura. La misura: misurazione diretta e indiretta; unità di misura, multipli e sottomultipli, sistemi di unità di misura (Sistema Internazionale, Sistema CGS, Sistema Pratico degli ingegneri e Sistema britannico ). Notazione scientifica, potenze di dieci e ordini di grandezza, cifre significative e regole di arrotondamento.

Esercitazioni su uso unità di misura e notazione scientifica,

1) Calcolo vettoriale

Grandezza scalare e grandezza vettoriale. I vettori come segmenti orientati; modulo, direzione e verso; vettori liberi e applicati. Operazioni con i vettori: somma di vettori e sue proprietà, differenza di vettori e sue proprietà, prodotto di un vettore per uno scalare e sue proprietà, divisione di un vettore per uno scalare e sue proprietà; prodotto scalare tra vettori e sue proprietà, prodotto vettoriale tra vettori e sue proprietà; derivata di un vettore e sue proprietà. Versori, derivata di un versore (con dimostrazione) e sue proprietà. Scomposizione di un vettore in 2 dimensioni rispetto ad assi generici e rispetto ad assi cartesiani, scomposizione di un vettore in 3 dimensioni rispetto a un sistema cartesiano ortogonale, rappresentazione cartesiana di un vettore; coseni direttori.

Esercitazioni sui vettori, proprietà e operazioni con i vettori

2) Cinematica del punto materiale

La schematizzazione di punto materiale. Sistemi di riferimento: il sistema di coordinate cartesiano, ascissa curvilinea, il sistema di coordinate polari, il sistema di coordinate sferiche. Legge oraria e traiettoria, diagramma orario. Vettori posizione e spostamento di un punto materiale in 3 dimensioni. Velocità: velocità media e istantanea; accelerazione: accelerazione media e istantanea. Classificazione dei moti. Il problema inverso della cinematica e le condizioni iniziali di un problema. Moto rettilineo uniforme. Moto rettilineo uniformemente accelerato. Moto del grave: in caduta libera, con velocità iniziale non nulla e lancio verso l’alto, con velocità iniziale non nulla e lancio verso il basso. Moto del proiettile: legge di composizione dei movimenti, traiettoria, altezza massima, gittata, tempo di volo, velocità al suolo; moto del proiettile con velocità iniziale rivolta verso il basso e con velocità iniziale orizzontale. Moto circolare uniforme: legge oraria in rappresentazione cartesiana, ascissa curvilinea, anomalia; diagramma orario; velocità periferica e velocità angolare, accelerazione centripeta. Moto circolare uniformemente accelerato: legge oraria in rappresentazione cartesiana, ascissa curvilinea, anomalia; diagramma orario; accelerazione angolare; accelerazione centripeta e tangenziale, accelerazione lineare. Moto periodico: periodo, pulsazione e frequenza. Moto armonico semplice: caratteristiche, legge oraria e diagramma orario. Moti relativi nel caso semplice di moto traslatorio rettilineo uniforme tra sistemi di riferimento: le trasformazioni galileiane.

Esercitazioni di Cinematica del punto materiale

3) Dinamica del punto materiale: leggi di Newton e Forze

La grandezza fisica forza: definizione operativa statica e dinamica, il dinamometro. Sistemi di riferimento inerziali. I principi fondamentali della dinamica del punto materiale: il Principio Zero o di relatività di G.Galilei; il I Principio della dinamica o Principio di inerzia; il II Principio della dinamica o Legge di Newton, il III Principio della dinamica o Principio di azione e reazione. Invarianza e covarianza delle leggi fisiche in presenza di sistemi di riferimento inerziali. Massa inerziale e massa gravitazionale. Forze costanti: la forza peso, la forza di attrito: reazione vincolare, attrito statico e dinamico. Piano inclinato liscio e scabro. Tensioni e vincoli: fili e carrucole ideali; la macchina di Atwood. Dinamica del moto circolare: il pendolo conico. ll pendolo semplice: isocronismo in regime di piccole oscillazioni, risoluzione dell’equazione differenziale del moto, legge oraria e sue caratteristiche. Forze dipendenti dalla posizione: la forza elastica; molle ideali e reali, molle in serie e in paralello. Forze che dipendono dalla velocità: forza di resistenza del mezzo o forza di attrito viscoso in regime di moto laminare, la legge di Stokes e il coefficiente di viscosità; caduta libera di un grave in aria: risoluzione dell'equazione differenziale del moto, legge oraria e andamento velocità, la velocità limite. Momento di una forza rispetto a un polo. Momento angolare o della quantità di moto rispetto a un polo. Relazione tra momento della forza e derivata del momento angolare (con dimostrazione). Conservazione del momento angolare.

Esercitazioni di Dinamica del punto materiale: le Forze

4) Dinamica del punto materiale: Lavoro ed Energia

Lavoro di una forza costante e di una forza variabile: definizione, proprietà e unità di misura. Lavoro in presenza di più forze: il principio di indipendenza delle azioni simultanee. Potenza media e istantanea: definizione, proprietà e unità di misura. Calcolo del lavoro della forza peso, della forza di attrito dinamico, della forza elastica, della forza di resistenza del mezzo. Nozione di campo di forze. Forze conservative e non conservative (dissipative). Proprietà delle forze conservative. Il lavoro come differenza di potenziale (con dimostrazione). Funzione potenziale; superfici equipotenziali e linee di forza. L'energia potenziale: definizione, proprietà e unità di misura. Calcolo della funzione potenziale (e energia potenziale) della forza peso e della forza elastica. L'energia cinetica: definizione, proprietà e unità di misura. L'energia meccanica: energia meccanica per un grave nel vuoto, energia meccanica per una molla nel vuoto, energia meccanica del pendolo semplice. Teorema delle Forze vive o Teorema dell’energia cinetica (con dimostrazione). Principio di conservazione dell’energia meccanica (con dimostrazione).

Esercitazioni di Dinamica del punto materiale: Lavoro ed Energia

5) Oscillazioni

L’oscillatore armonico nel vuoto: risoluzione dell’equazione differenziale del moto e sue proprietà. Oscillazioni di un punto materiale appeso ad una molla e forza peso e oscillazioni di un punto materiale su un vincolo orizzontale scabro (ovvero in presenza di attrito dinamico): ricerca della soluzione particolare. L’oscillatore armonico smorzato da una forza di attrito viscoso (oscillatore armonico in un fluido): moto sovra-smorzato o super-critico, moto smorzato o critico, moto sotto-smorzato o sotto-critico in presenza di vincolo liscio e di vincolo scabro: equazioni differenziali e loro soluzione (equazioni del moto). L’oscillatore armonico forzato (in presenza di mezzo ovvero in un fluido): risoluzione dell'equazione differenziale del moto, la legge oraria: fase transiente e fase stazionaria, studio dell'andamento dell'ampiezza della soluzione particolare: il fenomeno della risonanza. Energia meccanica dell’oscillatore armonico semplice.

6) Gravitazione Universale

La forza di attrazione gravitazionale: la legge di Gravitazione Universale e sue proprietà per punti materiali, per oggetti a simmetria sferica, per oggetti di forma irregolare e sua espressione in un sistema di riferimento cartesiano qualsiasi e in un sistema di riferimento con origine coincidente con una delle masse. Sorgente del campo gravitazionale (ovvero in presenza di due masse nel caso M>>m). Il campo gravitazionale in coordinate sferiche: campo centrale a simmetria sferica. Calcolo del lavoro della forza di attrazione gravitazionale. Calcolo della funzione potenziale gravitazionale. Energia potenziale, superfici equipotenziali e linee di forza per il campo di gravitazionale. Energia meccanica per un punto materiale in un campo di forze gravitazionale. Calcolo della velocità di fuga.Le tre leggi di Keplero: enunciato e proprietà; I Legge di Keplero (con dimostrazione: orbite piane); II Legge di Keplero (con dimostrazione) e proprietà della velocità areolare; III legge di Keplero (con dimostrazione) ed eccentricità delle orbite.

Esercitazioni di Dinamica del punto materiale: Gravitazione

7) Dinamica dei Sistemi di punti materiali

I sistemi di punti materiali: modellizzazione discreta e continua. Centro di massa di un sistema di punti materiali e calcolo in casi notevoli. Densità di massa lineare, superficiale e volumetrica. Forze interne, forze esterne. Quantità di moto totale di un sistema di punti materiali. Momento totale delle forze esterne per un sistema di punti materiali. Momento angolare totale per un sistema di punti materiali. Energia cinetica per un sistema di punti materiali. I Teorema del centro di massa (con dimostrazione); II Teorema del centro di massa (con dimostrazione). Equazioni cardinali del moto di un sistema: I equazione cardinale (con dimostrazione), II equazione cardinale (con dimostrazione). Principio di conservazione della quantità di moto totale per un sistema di punti materiali e casi notevoli.Dinamica degli Urti: urti elastici e anelastici.

Esercitazioni di Dinamica dei Sistemi e Urti

8) Dinamica del Corpo Rigido

La schematizzazione di corpo rigido. Gradi li libertà. Momento di inerzia, calcolo del momento di inerzia per casi notevoli. Teorema di Huygens-Steiner (con dimostrazione). Energia cinetica per un corpo rigido. Moto dei corpi rigidi: moto traslatorio; moto rotatorio: precessione del vettore momento angolare totale, espressione del momento angolare assiale; moto roto-traslatorio: il puro rotolamento. Assi di simmetria, assi di inerzia, assi centrali. Rotazione di un corpo rigido attorno ad un asse fisso: equazione assiale del moto, conservazione del momento angolare assiale. Il pendolo composto o pendolo fisico. La carrucola come corpo rigido.

Esercitazioni di Dinamica del Corpo Rigido

9) Fluidostatica e Fluidodinamica

I fluidi: liquidi e aeriformi. La modellizzazione di fluido perfetto. Densità media e assoluta per un fluido, densità relativa. Pressione e unità di misura, sforzo di taglio. Equazione fondamentale della fluidostatica; la legge di Stevino; esperienza di Torricelli; il Principio di Pascal; andamento della pressione atmosferica con la quota; il principio di Archimede. Descrizione lagrangiana e euleriana per fluidi in movimento. Regime stazionario. Linea di flusso, tubo di flusso. Equazione di continuità per i fluidi in movimento: la portata. Teorema di Bernoulli (con dimostrazione).

Esercitazioni di Fluidostatica e Fluidodinamica

10) Termodinamica: Temperatura, Gas perfetto, Calore

Introduzione alla Termodinamica: principio zero della termodinamica, definizione di temperatura e scelta della scala termometrica, termometro a volume costante, scala Celsius e Kelvin.Teoria cinetica dei gas perfetti, proprietà molecolari dei gas, libero cammino medio, descrizione microscopica della pressione, distribuzione delle velocità molecolari dei gas, forze intermolecolari, teorema di equipartizione dell’energia. Leggi di Boyle-Mariotte, Charles e Gay-Lussac, equazione di stato del gas perfetto. Lavoro di trasformazioni termodinamiche, calore, energia interna.

Esercitazioni di Termodinamica 1

11) Termodinamica: I e II Principio, Entropia

Primo principio della termodinamica, trasferimento del calore, capacità termica, capacità termica specifica a pressione o volume costante, relazione di Mayer per gas perfetti, calori latenti. Dilatazione termica. Calore trasferito in trasformazioni termodinamiche qualsiasi per un gas perfetto, trasformazioni adiabatiche, trasformazioni cicliche e definizione di rendimento o coefficiente di prestazione, ciclo di Carnot ideale. Secondo principio della termodinamica: postulati di Kelvin-Planck e di Clausius e loro equivalenza. Teorema di Carnot e macchine reali, teorema e diseguaglianza di Clausius, definizione di entropia e sue proprietà, variazione di entropia dell’universo, gas reali e potenziali termodinamici.

Esercitazioni di Termodinamica 2


Testi di riferimento

  1. R. Davidson “Metodi matematici per un corso introduttivo di Fisica” casa editrice EdiSES;
  2. S.Focardi, I.Massa, A.Uguzzoni: “Fisica Generale” Volume 1: Meccanica, II edizione, casa editrice Ambrosiana;
  3. S.Focardi, I.Massa, A.Uguzzoni: “Fisica Generale” Volume 2: Termodinamica e Fluidi, II edizione, casa editrice Ambrosiana;
  4. P.Mazzoldi, M. Nigro, C. Voci: “Fisica” Volume 1: Meccanica e Termodinamica, II edizione, casa editrice EdiSES;
  5. C.Mencuccini, V.Silvestrini: "Fisica. Meccanica e termodinamica" anno 2016, Editore CEA
  6. R. Bellotti, G.E.Bruno, G.Florio, N.Manna “Esercizi di Fisica” Meccanica e Termodinamica casa editrice Ambrosiana

Lo studente è comunque libero di scegliere qualsiasi altro testo di Fisica Generale 1 di livello universitario



Programmazione del corso

 ArgomentiRiferimenti testi
1INTRODUZIONE: Il metodo scientifico, grandezze fisiche e unità di misura, notazione scientificaTesti 1., 2. e 6. 
2CALCOLO VETTORIALE: Scalari e vettori. Operazioni con i vettori.Testi 1., 2. e 6.  
3CINEMATICA DEL PUNTO MATERIALE: Sistemi di riferimento. Legge oraria, traiettoria, velocità, accelerazione. Moto rettilineo uniforme e uniformemente accelerato. Moto del grave. Moto del proiettile. Moto circolare uniforme e uniformemente accelerato.Testi 2. e 4.  
4DINAMICA DEL PUNTO MATERIALE: I Principi fondamentali. La massa. La Forza. Le forze: forza peso, reazione vincolare normale, forza di attrito statico e dinamico, forza elastica, forza viscosa. Quantità di moto. Momento di una forza. Momento angolare. Lavoro. Energia cinetica e energia potenziale. Energia meccanica.Testi 2., 4. e 6. 
5LE OSCILLAZIONI: cinematica del moto oscillatorio armonico. Dinamica dell'oscillatore armonico nel vuoto. Il pendolo semplice e isocronismo piccole oscillazioni. Energia di un oscillatore armonico.Testo 2.  
6LA GRAVITAZIONE: Le Leggi di Keplero. Legge di Gravitazione Universale. Energia potenziale del campo gravitazionale. Velocità di fuga.Testi 2. e 6.  
7DINAMICA SISTEMI DI PUNTI MATERIALI E CORPO RIGIDO: Centro di massa. Densità di massa. Teoremi del Centro di Massa. Teoremi di Koenig. Momento di inerzia. Teorema di Huygens-Steiner. Equazioni cardinali dinamica.Testi 2. e 4.  
8FLUDOSTATICA E FLUIDODINAMICA: fluidi reali e fluidi ideali. Pressione. Legge di Stevino. Esperienza di Torricelli. Principio di Pascal. Principio di Archimede. Portata e sua conservazione. Teorema di BernoulliTesto 3.  
9TERMODINAMICA I: Temperatura, Gas perfetto, Calore Principio zero della termodinamica, definizione di temperatura e scale termometriche.Teoria cinetica dei gas perfetti, teorema di equipartizione dell’energia. Leggi di Boyle-Mariotte, Charles e Gay-Lussac, equazione di stato del gas perfetto. Lavoro di trasformazioni termodinamiche, calore, energia interna.Testi 3., 4. e 5.  
10TERMODINAMICA II: Primo Principio della termodinamica, trasferimento del calore, capacità termica, capacità termica specifica a pressione o volume costante, relazione di Mayer per gas perfetti, calori latenti. Dilatazione termica. Trasformazioni adiabatiche, cicliche e definizione di rendimento, ciclo di Carnot ideale. Secondo Principio della termodinamica. Teorema di Carnot e macchine reali, teorema e diseguaglianza di Clausius, definizione di entropia e sue proprietà, variazione di entropia dell’Universo.Testi 3., 4. e 5.  

Verifica dell'apprendimento

Modalità di verifica dell'apprendimento

  • 1 prova scritta valutata in 30/30 con 5 esercizi su 5 argomenti del programma (cinematica, dinamica del punto, dinamica corpo rigido, fuidi, termodinamica) il cui superamento determina l'accesso all'orale;
  • 1 prova orale inerente l'intero programma del corso.

NON sono previste PROVE di ESONERO o PROVE in ITINERE durante lo svolgimento dell'insegnamento di FISICA 1.

MODALITA' ESAME SCRITTO

La prova scritta ha durata di 3 ore e durante tale prova non è consentito consultare libri o appunti. E' permesso solo l'uso della calcolatrice scientifica e di un formulario di matematica.

La prova scritta si intende SUPERATA se lo studente conseguirà una votazione maggiore o uguale a 15/30. Chi supera l'esame scritto con una votazione maggiore o uguale a 18/30 può sostenere l'esame orale con piena sufficienza. Chi supera l'esame scritto con una votazione inclusa tra 15/30 e 17/30 sostiene l'esame con RISERVA ovverossia dovrà dimostrare all'orale di colmare le lacune che non gli hanno consentito di ottenere la completa sufficienza allo scritto.

Per la prova scritta sono fissati 2 appelli nel I periodo di sessione di esami, 2 appelli nel II periodo di sessione di esami e 2 appelli nel III periodo di sessione di esami.

E' inoltre fissato 1 appello di prolungamento riservato a studenti fuori corso al di fuori delle sessioni suddette, generalmente nel periodo aprile/maggio oppure novembre/dicembre.

E' inoltre fissato 1 appello di prolungamento, al di fuori delle sessioni suddette, riservato agli studenti regolarmente iscritti agli anni successivi al I anno, durante il periodo di pausa dalle lezioni (durante le vacanze natalizie oppure durante le vacanze pasquali).

MODALITA' ESAME ORALE

In caso di superamento con piena sufficienza o con riserva della prova scritta, lo studente potrà sostenere la prova orale ENTRO e NON OLTRE la fine dellla Sessione corrente.

# ESEMPIO: lo studente supera l'appello scritto del 29.01.2020 oppurre del 12.02.2020 - che sono i 2 appelli scritti di Fisica 1 previsti per la I SESSIONE di esami allora DOVRA' sostenere l'esame orale entro la fine della Prima Sessione, cioè ENTRO e NON OLTRE il 29.02.2020.#

Le date dell'esame orale per ciascuna SESSIONE (I, II, III o STRAORDINARIA) saranno comunicate a inizio sessione per ciascuna sessione mediante avviso sulla piattaforma Studium nonchè comunicate all'atto dell'esame scritto.

In caso di esito negativo nella prova orale, gli AMMESSI conservano la votazione del compito scritto e potranno ripetere l'esame orale in appelli successivi, gli AMMESSI CON RISERVA dovranno, invece, ripetere l'esame scritto.


Esempi di domande e/o esercizi frequenti

Le domande e gli esercizi proposti agli esami si riferiranno esclusivamente ai contenuti proposti durante le lezioni e potranno spaziare su tutti gli argomenti presentati e in elenco in programma.

Esempi tipici di domande poste all'esame orale su argomenti irrinuncialbili sono: una domanda sulla Meccanica, una domanda sui Fluidi, una domanda sulla Termodinamica.