FONDAMENTI DI ANALISI DATI E LABORATORIO
Academic Year 2021/2022 - 1° Year - Curriculum Data Science- FONDAMENTI DI ANALISI DATI: Giovanni GALLO
- Fundamental of Data Analysis: Giovanni GALLO
Scientific field: INF/01 - Informatics
Taught classes: 36 hours
Exercise: 24 hours
Laboratories: 12 hours
Term / Semester: 1°
Learning Objectives
- FONDAMENTI DI ANALISI DATI
Basic introduction to state of the art data analysis and automated classification.
- Fundamental of Data Analysis
Basic introduction to state of the rt data analysis and automated classification.
Course Structure
- FONDAMENTI DI ANALISI DATI
Frontal lectures in classroom
Modalities may change if requirtement by objective conditions (COVID 19)
- Fundamental of Data Analysis
Live lecture in presence (whenver possible)
Interactive labs.
Detailed Course Content
- FONDAMENTI DI ANALISI DATI
- Fundamental of Data Analysis
Data visualization, descriptive statistics
regression and correlation. Logistic regression.
Bayes approach to learning. MAP.
TS, CS, trainign and generalization error. Confuson matrix. ROC.
LDA, SVM.
Kernel trick: non linear SVM
PCA, non linear techniques for dimension reduction
K-nn
CART.
Clustering: k-means and hierarchical clustering.
Ensblem techniques. Boosting
- Fundamental of Data Analysis
- Fundamental of Data Analysis
Data visualization, descriptive statistics
regression and correlation. Logistic regression.
Bayes approach to learning. MAP.
TS, CS, trainign and generalization error. Confuson matrix. ROC.
LDA, SVM.
Kernel trick: non linear SVM
PCA, non linear techniques for dimension reduction
K-nn
CART.
Clustering: k-means and hierarchical clustering.
Ensblem techniques. Boosting
Textbook Information
- FONDAMENTI DI ANALISI DATI
a) Chapters from: Pattern Recognition and Machine Learning (Information Science and Statistics) Bishop C.M: Editore: Springer, 2007
b) Chapters from:Python for Data Analysis: Data Wrangling with Pandas, Numpy, and IPython (Inglese) W.Mckinney O'reilly 2017
Tutorial on line, handsout
- Fundamental of Data Analysis
Teacher's handouts
Chapters from:Python for Data Analysis: Data Wrangling with Pandas, Numpy, and IPython (Inglese) W.Mckinney O'reilly 2017
Jupyter notebooks