SOCIAL MEDIA MANAGEMENT
Academic Year 2017/2018 - 3° Year - Curriculum A
Teaching Staff: Giovanni Maria FARINELLA
Credit Value: 6
Taught classes: 48 hours
Term / Semester: 1°
Credit Value: 6
Taught classes: 48 hours
Term / Semester: 1°
Learning Objectives
The course aims to present theories and techniques for the analysis of multimedia social data ( images , text, tags , metadata ).
Detailed Course Content
- Social Media, Computational Social Science e Marketing Digitale
- Big Data, Sentiment Analysis e Visual Analytics
- APIs and libraries for the exploration, visualization and analysis of social media data
- Machine Learning e Pattern Recognition algorithms with applications in the context of Social Media
- Computer Vision algorithms with applications in the context of Social Media
- Deep Learning
Textbook Information
- R. Zafarani, M. A. Abbasi, H. Liu, Social Media Mining - An Introduction, Cambridge University Press, 2014
- J. Leskovec, A. Rajaraman, J. D. Ullman, Mining of Massive Datasets, Cambridge Press, 2011
- C. Bishop, Pattern Recognition and Machine Learning, Springer, 2006
- E. Alpaydin, Introduction to Machine Learning, The MIT Press, 2009
- Y. Bengio, I. J. Goodfellow, A.Courville, Deep Learning, Book in preparation for MIT Press, 2015
- Duda, P. E. Hart, D. G. Stork, Pattern Classification (2nd ed.), Wiley, 2000
- Murphy, Machine Learning – A Probabilistic Perspective, The MIT Press, 2012
- R. C. Gonzales, R.E. Woods, Elaborazione delle Immagini Digitali, Pearson Italia 2008
- R. Szeliski, Computer Vision: Algorithms and Application, Springer 2010
- S. J.D. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press, 2012