SUPERIOR ALGEBRA
Academic Year 2024/2025 - Teacher: CARMELO ANTONIO FINOCCHIAROExpected Learning Outcomes
Course Structure
Detailed Course Content
I. Modules. Free modules, flat modules, injective modules, projective modules. Examples and exercises.
II. Topological rings. Topologies on a ring. Completions. Hensel's Lemma. Examples and exercises.
III. The prime spectrum of a ring. Zariski topology, constructible topology, inverse topology. Topological properties of the prime spectrum of a ring. Examples and exercises.
IV. Spectral spaces. Topological characterization for the topological spaces that are homeomorphic to the prime spectrum of a ring. Examples and exercises.
V. Introduction to Multiplicative Ideal Theory . Invertible ideals. Dedekind domains. Prufer domains. Ideal class group. Elements of algebraic number theory. Examples and exercises.
VI. Riemann-Zariski spaces. Zariski topology on spaces of valuation domains. Riemann-Zariski spaces are spectral. Examples and exercises.
Textbook Information
1. R. Gilmer, Multiplicative Ideal Theory. M. Dekker (1972).
2. A. Grothendiek, Éléments de géométrie algébrique I. Le langage des schémas. Publications Mathématiques de l'IHÉS, Volume 4 (1960).
3. I. Kaplansky, Commutative Rings. Allyn and Bacon, Inc. (1970).
4. L. Salce, L. Fuchs, Modules over Non-Noetherian Domains. Mathematical Surveys and Monographs AMS (2000).
5. O. Zariski, P. Samuel, Commutative Algebra, Volume II. Graduate Texts in Mathematics (1976).
6. Lecture notes.