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	9.45	Opening	and	welcome	
	
10:00-10:30	
	
Lorenzo	Pareschi	(Università	di	Ferrara)	
	
Uncertainty	quantification	for	kinetic	equations	
	
In	 this	 talk	we	will	 survey	 some	 recent	 results	 concerning	 the	 construction	 of	
efficient	 numerical	 methods	 for	 uncertainty	 quantification	 (UQ)	 in	 kinetic	
equations.	In	spite	of	the	vast	amount	of	existing	research,	both	theoretically	and	
numerically,	 the	 study	 of	 kinetic	 equations	 has	mostly	 remained	deterministic	
and	ignored	uncertainty.	In	reality,	there	are	many	sources	of	uncertainties	that	
can	arise	in	these	equations:	
	
•	 Incomplete	 knowledge	 of	 the	 interaction	 mechanism	 between	
particles/agents.	
•	 Imprecise	measurements	of	the	initial	and	boundary	data.	
•	 Other	sources	of	uncertainty	like	forcing	and	geometry,	etc.		
	
Understanding	the	impact	of	these	uncertainties	is	critical	to	the	simulations	of	
the	 complex	 kinetic	 systems	 to	 validate	 the	 kinetic	 models,	 and	 will	 allow	
scientists	and	engineers	to	obtain	more	reliable	predictions	and	perform	better	
risk	 assessment.	UQ	 in	 kinetic	 equations	 represents	 a	 computational	 challenge	
for	 many	 reasons.	 Simple	 UQ	 tasks	 such	 as	 the	 estimation	 of	 statistical	
properties	 of	 the	 solution	 typically	 require	 multiple	 calls	 to	 a	 deterministic	
solver.	 A	 single	 solver	 call	 is	 already	 very	 expensive	 for	 such	 complex	
mathematical	 models.	 In	 addition,	 preservation	 of	 the	 structural	properties	 of	
the	 equations,	 like	 non	 negativity	 and	 physical	 conservations,	 is	 crucial	 for	



effective	performance	of	the	numerical	methods.	
Recently	we	 developed	 novel	 approaches	 to	UQ	 of	 kinetic	 equations	 based	 on	
generalized	Polynomial	Chaos	expansions	at	a	particle	 level	 in	order	 to	reduce	
the	 problem	 dimension	 and	 maintain	 the	 main	 physical	 properties	 of	 the	
solution	 and	 on	 micro-macro	 Monte	 Carlo	 techniques	 which	 using	 control	
variate	estimators	based	on	 the	 local	equilibrium	are	capable	 to	accelerate	 the	
slow	statistical	convergence	of	Monte	Carlo	methods.	  
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10:30-11:00	
	
Gabriella	Puppo	(Unviersità	dell’Insubria)	
	
Dissipation,	 dispersion	 and	 distortion	 of	 high	 order	 schemes	 for	
conservation	laws	
	
The	 performance	 of	 high	 order	 schemes	 for	 hyperbolic	 equations	 usually	 are	
measured	 through	 the	 amount	 of	 artificial	 dissipation	 and	 artificial	 dispersion	
with	 which	 they	 pollute	 the	 exact	 solution.	 These	 artifacts	 derive	 from	 the	
necessity	 to	 preserve	 stability,	 and	 from	 the	 discrete	 nature	 of	 the	 numerical	
solution.	 They	 are	 estimated	 applying	 the	 scheme	 to	 the	 linear	 advection	
equation,	 and	 they	 are	 often	 used	 to	 compare	 different	 schemes,	 of	 the	 same	
order	of	accuracy.		
However,	 the	 need	 to	 prevent	 the	 onset	 of	 spurious	 oscillations	 requires	 that	
high	 order	 schemes	 be	 non	 linear,	 even	 when	 they	 are	 applied	 to	 a	 linear	
equation.	 This	 fact	 has	 been	 well	 known	 since	 the	 mid	 eighties,	 in	 the	 first	
pioneering	works	on	high	order	non	oscillatory	schemes.	What	is	less	known,	is	
that	 the	 non	 linearity	 of	 high	 order	 schemes	 induces	 spurious	 modes	 which	
result	 in	 the	 distortion	 of	 the	 exact	 solution.	 In	 this	 talk,	 I	 will	 start	 from	 the	



notion	 of	 numerical	 diffusion	 and	 dispersion,	 introduce	 the	 idea	 of	 numerical	
distortion	 	and	 propose	 a	 way	 of	 measuring	 it	 through	 a	 notion	 of	
numerical	 	temperature.	 Finally,	 I	 will	 present	 high	 order	 schemes	 which	 are	
cool,	 in	 the	sense	 that	 they	are	 	characterized	by	a	small	value	of	 temperature,	
thus	controlling	spurious	distorsive	effects.	
	
11:00-11:30	
	
Matteo	Semplice	(Università	di	Torino)	
	
High	order	Finite	Volume	Schemes	for	Balance	Laws	with	Stiff	Relaxation	

	
The	 aim	 of	 this	 work	 is	 to	 construct	 and	 analyse	 efficient	 high	 order	 finite	
volume	 shock	 capturing	 schemes	 for	 the	 numerical	 solution	 of	 hyperbolic	
systems	with	stiff	source	terms.		In	standard	high	order	finite	volume	schemes	it	
is	difficult	to	treat	the	average	of	the	source	implicitly,	since	the	computation	of	
such	 average	 couples	 neighboring	 cells,	 making	 implicit	 schemes	 extremely	
expensive.	 In	 this	work	we	 split	 the	 source	 term	 in	 a	diagonal	 part	 integrated	
implicitly	and	an	explicit	correction	term,	obtaining	very	efficient	semi-implicit	
schemes. 
	
Coffee	Break	11:30-11:45	
	
11:45-12:15	
	
Giacomo	Dimarco	(Università	di	Ferrara)	
	
IMEX	linear	multistep	methods	for	kinetic	equations	and	related	problems	
	
In	this	talk,	we	will	introduce	linear	multistep	methods	for	the	time	integration	of	non	linear	
kinetic	 equations.	 In	 particular,	we	will	 discuss	 consistency	 and	 stability	 of	 the	 schemes	 as	
well	as	their	asymptotic	properties	in	comparison	with	Runge-Kutta	methods.	
	
12:15-12:45	
	
Sebastiano	Boscarino	(Università	di	Catania)	
	
All	 Mach	 Number	 Second	 Order	 Semi-Implicit	 Scheme	 for	 the	 Euler	 Equations	 of	 Gas	
Dynamics	
	
This	 paper	 presents	 an	 asymptotic	 preserving	 (AP)	 all	 Mach	 number	 _finite	
volume	 shock	 capturing	 method	 for	 the	 numerical	 solution	 of	 compressible	
Euler	 equations	 of	 gas	 dynamics.	 Both	 isentropic	 and	 full	 Euler	 equations	 are	



considered.	The	equations	are	discretized	on	a	staggered	grid.	This	simplifes	flux	
computation	 and	 guarantees	 a	 natural	 central	 discretization	 in	 the	 low	 Mach	
limit,	 thus	 dramatically	 reducing	 the	 excessive	 numerical	 diffusion	 of	 upwind	
discretizations.	 Furthermore,	 second	 order	 accuracy	 in	 space	 is	 automatically	
guaranteed.	 For	 the	 time	discretization	we	 adopt	 an	 Semi-IMplicit/EXplicit	 (S-
IMEX)	 discretization	 getting	 an	 elliptic	 equation	 for	 the	 pressure	 in	 the	
isentropic	case	and	for	the	energy	in	the	full	Euler	equations.	Such	equations	can	
be	 solved	 linearly	 so	 that	 we	 do	 not	 need	 any	 iterative	 solver	 thus	 reducing	
computational	 cost.	 Second	 order	 in	 time	 is	 obtained	 by	 a	 suitable	 S-IMEX	
strategy	 taken	 from	 Boscarino	 et	 al.	 Moreover,	 the	 CFL	 stability	 condition	 is	
independent	of	the	Mach	number	and	depends	essentially	on	the		fluid	velocity.	
Numerical	 tests	 are	 displayed	 in	 one	 and	 two	 dimensions	 to	 demonstrate	
performances	of	our	scheme	in	both	compressible	and	incompressible	regimes.	
	
LUNCH	BREAK	
	
15:00-15:30	
	
Roberto	Ferretti	(Università	Roma	tre)	
	
Un solutore diffusione-trasporto esplicito, a grandi passi in tempo, per l'equazione 
di Navier-Stokes.	
	
Si	discuterà	l'introduzione	di	un	solutore	diffusione-trasporto	totalmente	Semi-
Lagrangiano	 nella	 soluzione	 della	 equazione	 di	 Navier-Stokes,	 sia	 nella	
formulazione	 vorticità-funzione	 di	 corrente	 che	 in	 quella	 pressione-velocita'.	
Nonostante	il	basso	ordine	di	consistenza,	questo	schema	si	dimostra	efficace	e	
di	basso	costo	computazionale,	permettendo	numeri	di	Courant	relativamente	
grandi	 ed	 evitando	 l'introduzione	 di	 viscosità	 numerica	 indesiderata.	 Si	
presenterà	 lo	 schema,	 in	 particolare	 le	 strategie	 di	 upwinding	 e	
l'implementazione	delle	condizioni	al	bordo,	e	si	mostreranno	test	numerici	su	
benchmark	classici,	sia	in	regime	laminare	che	turbolento.	
	
	
15:30-16:00	
	
Elisabetta	Carlini	(Università	di	Roma	la	Sapienza)	
	
Una	approssimazione	di	tipo	Semi-Lagrangiano	di	alcune	Equazioni	di	
Fokker-Planck-Kolmogorov	non	lineari	e	applicazioni	

	
Presento	uno	schema	di	tipo	Semi-Lagrangiano	per	alcune	equazione		di	Fokker-



Planck-Kolmogorov	non	lineari.	Lo	schema	preserva	la	non	negatività	e	la	massa	
della	 soluzione	 e	 permette	 larghi	 passi	 in	 tempo.	 Presento	 un	 risultato	 di	
convergenza	 sotto	 ipotesi	 di	 continuità	 dei	 coefficienti	 e	 di	 crescenza	 al	 più	
lineare.	Infine,	 	mostro	 alcune	 applicazioni	 dello	 schema	 a	 vari	 esempi,	 che	
includono	sistemi	Mean	Field	Games	e	una	variante	del	modello	di	Hughes	per	la	
dinamica	di	pedoni.	

	
Lavoro	in	collaborazione	con	F.J.	Silva	
	
Coffee	Break	16:00-16:15	
	
16:15-16:45	
	
Armando	Coco	(Università	di	Oxford	Brookes)	
	 
	A	second-order	finite-difference	numerical	method	for	moving	interface	
problems	in	2D	and	3D	
 
In	this	talk	we	propose	a	ghost-point	second-order	accurate	numerical	method	
to	solve	interface	problems	in	2D	and	3D.	The	method	can	be	applied	to	several	
problems,	 such	 as	 elliptic	 equations	 with	 discontinuous	 coefficients	 (with	
general	 non	 homogeneous	 jumps	 in	 the	 solution	 and	 its	 gradient),	 Euler	
equations	of	gas	dynamics	around	moving	objects,	monument	conservation.	
The	method	consists	of	a	 finite-difference	method	on	a	Cartesian	grid	 in	which	
complex	geometries	(boundaries	and	interfaces)	are	embedded	and	tracked	by	a	
level-set	method.	The	discretization	is	second	order	accurate	in	the	solution	and	
the	gradient	itself.	
In	 order	 to	 avoid	 the	 drop	 in	 accuracy	 caused	 by	 the	 discontinuity	 of	 the	
coefficients	 across	 the	 interface,	 two	 numerical	 values	 are	 assigned	 on	 grid	
points	that	are	close	to	the	interface:	a	real	value,	that	represents	the	numerical	
solution	 on	 that	 grid	 point,	 and	 a	 ghost	 value,	 that	 represents	 the	 numerical	
solution	extrapolated	from	the	other	side	of	the	interface,	obtained	by	enforcing	
the	assigned	non-homogeneous	jump	conditions	on	the	solution	
and	 its	 flux.	 The	 linear	 system	 arising	 from	 the	 discretization	 is	 solved	 by	 an	
efficient	multigrid	approach.	The	method	is	robust	enough	to	handle	large	jump	
in	 the	 coefficients:	 order	 of	 accuracy,	 monotonicity	 of	 the	 errors	 and	 good	
multigrid	convergence	factor	are	maintained	by	the	scheme.	
	
	
16:45-17:15	
	
Chiara	Stissi	(Università	di	Catania)	
	



On	the	stability	of	ghost	point	methods	
	
The	aim	of	this	presentation	is	the	study	the	stability	of	the	ghost	point	methods.			
The	 first	 method	 I	 studied	 is	 the	 the	 Coco-Russo	 method	 for	 the	 Poisson	
equation.	 The	 method	 is	 the	 finite	 difference	 method	 applied	 to	 the	 Dirichlet	
problem,	is	an	arbitrary	domain. 
To	 solve	 numerically	 such	 a	 problem	 we	 first	 descritize	 the	 computational	
domain	[0,1]! 	on	a	uniform	grid.	To	discretize	 the	problem	we	proceed	 in	 two	
different	ways.	In	the	inside	points	we	use	the	usual	finite	difference	method.	To	
close	 the	 linear	 system	we	must	write	 the	 equations	 for	 the	 ghost	 points.	 For	
each	 ghost	 point	G	we	 consider	 its	 projection	F	 on	 the	 border.	 To	 impose	 the	
boundary	 condition	 at	F	we	 condider	 a	 polynomial	 interpolation	procedure	 at	
the	 node	G	 and	 at	 its	 neighbors	 that	 depending	 on	 the	 accuracy	 we	 want	 to	
obtain	and	also	on	the	dimension	d.	
The	aim	is	to	study	the	stability	of	the	linear	system	which	is	linked	to	the	study	
of	 the	 norm	 of	 the	 inverse	matrix	 of	 the	 coefficients	(𝐴!!!).	We	 have	 obtained	
numerical	results	in	1D	and	2D	and	theoretical	results	only	in	1D.	The	numerical	
experiments	show	that	the	estimates	for	 𝐴!!! !

	grow	like	𝑛!/!	p=1,2,…		and	the	
spectral	 radius	 of	 	𝐴!!!essentially	 does	 not	 depend	 on	 the	 position	 of	 a	 and	 it	
tends	 to	 a	 constant	 for	 large	 values	 of	n.	 In	 1D	 these	 experimental	 results	 are	
theoretically	confirmed.	
Next,	 I	applied	 the	ghost	point	method	to	 the	gas-dynamics	equations.	 I	 started	
the	study	in	one-dimensional	case	on	a	domain	 0, 𝑏  ⊂ 0,1 .	The	general	idea	is	
that	 explicit	 differential	 operators	 in	 space	 relative	 to	 convective	 or	 material	
speeds	 are	 discretized	 by	 local	 Lax-Friedrics	 fluxes	 and	 the	 linear	 implicit	
operators,	pertaining	to	acoustic	waves,	are	discretized	by	central	differences.	I	
have	studied	the	stability	of	the	method	based	on	the	position	of	point	b.	
The	aim	is	to	study	this	stability	on	more	complex	geometries.	
		
 
 
 
 
 
	


