

Dottorato di Ricerca in Informatica – XL Ciclo A.A. 2024/2025

Perceptive Deep Learning and Generative AI for Industrial and Legal Applications

Prof. Francesco Rundo, Ph.D.

Abstract

This course, "Perceptive Deep Learning and Generative AI for Industrial and Legal

Applications," preliminarily explores how bio-inspired Deep Learning architectures and Generative AI can be effectively applied to real-world contexts in the industrial, automotive, and legal/forensic fields. By examining scalable AI solutions, hybrid perceptive–generative models, and multi-modal data analysis, participants will gain preliminary insight into cutting-edge techniques and the explainability requirements needed for safe and robust deployment.

Program Overview:

1. Bio-Inspired AI and Deep Learning

- **Biological Principles:** The course begins by preliminarly recall of biological concepts embedded in human brain.
- **Core Concepts:** Participants will explore (briefly) foundational concepts such as neural network structures (feedforward, convolutional, recurrent, transformer, hybrid, etc..), activation functions, optimization strategies, etc...

2. Industrial and Embedded Applications

- **Scalable AI Solutions:** Participants will understand how to scale AI applications for small, embedded devices. This includes how to optimize deep neural networks for power efficiency and real-time performance (introduction to Knowledge Distillation Approaches).
- **Semiconductor Industry:** The course addresses how AI aids in semiconductor manufacturing, design optimization, quality inspection (reducing defects), device modeling, device lifetime monitoring, etc..
- Automotive Applications:
 - **Engine Control**: Deep Learning can be applied to engine management systems for improving performance and real-time adjustments.
 - **Driver Assistance**: Participants will learn about perceptive and generative models for driver assistance features (e.g., ADAS).
 - **Environmental Understanding**: Advanced neural networks and saliency based processing for scene analysis enable partial or full autonomy, identifying road elements, pedestrians, and other vehicles.

3. Generative AI in Industrial Systems

• **Generative Models**: The course covers some insights about algorithms based on new concept of Generative-AI for simulating, generating, or augmenting data.

4. Applications in the Legal/Forensic Field

- **Document Analysis**: Leveraging perceptive Deep Learning to identify patterns within large archives of documents, contracts, and evidence. Embeddings and Indexing.
- **Hybrid Approaches** (Perceptive + Generative): The course explores how combining perceptive (recognition/classification) and generative (creation/synthesis) models can aid in evidence synthesis, document summarization, contract checking and detecting anomalies.
- **Explainability Requirements**: The forensic environment often demands transparent decision-making. Participants will learn about methods to interpret and explain model outputs, ensuring that deep learning systems are legally defensible and ethically sound.

5. Multi-Modal Data Analysis

- **Definition and Techniques:** The course introduces how to integrate and process multiple data types (images, text, audio, sensor data) to gain richer insights.
- **Case Studies:** Participants will learn from real-world examples in both automotive and semiconductor manufacturing, as well as legal and forensic applications.