

Materiale per workshop guidato

Architettura degli Elaboratori

Autori: Corrado Santoro e Raffaela Leone

Con il supporto di strumenti di intelligenza artificiale.

Se sei qui, significa che stai affrontando uno dei percorsi universitari più

stimolanti di sempre: l’Informatica. In questo mondo, capire come imparare

bene vale quanto conoscere gli algoritmi o programmare un compilatore. Questa

dispensa nasce con un’idea semplice:

 mostrarti come usare i Large Language Models (LLM) – come ChatGPT,

Gemini, Claude –per studiare meglio, capire più a fondo e verificare le tue

conoscenze in ogni insegnamento fondamentale del tuo corso di laurea. Non

per copiare. Non per trovare scorciatoie. Ma per diventare una versione più

potente di te stessə.

Sommario

Perché usare i LLM quando studi informatica? ... 4

1. Capisci più velocemente .. 4

2. Puoi rielaborare in modi diversi .. 4

3. Ti alleni e ti valuti meglio ... 4

Cosa NON devono fare gli LLM .. 5

Come usare questa dispensa ... 5

SEZIONE 1 — Come imparare con l’AI: il metodo Smart Learning Design (SLD)

 .. 5

 ARCHITETTURA DEGLI ELABORATORI .. 10

Esercizi .. 12

LIVELLO 1 — BASE .. 12

LIVELLO 2 — INTERMEDIO ... 12

LIVELLO 3 — AVANZATO .. 13

Perché usare i LLM quando studi informatica?
Per tre motivi molto forti:

1. Capisci più velocemente

Un LLM può darti:

• spiegazioni semplici dei concetti più astratti

• esempi concreti

• metafore

• confronti tra idee simili

• schemi visivi

Tutto questo accelera la comprensione, soprattutto nelle materie più “dure”

come Architettura degli Elaboratori, Analisi o Algebra Lineare.

2. Puoi rielaborare in modi diversi

Gli LLM ti aiutano a:

• trasformare lezioni e appunti in mappe cognitive

• creare tabelle comparative

• costruire glossari dei termini più importanti

• generare domande guida per leggere i testi

È come avere un assistente che rende più chiaro ciò che già possiedi, senza

sostituirti.

3. Ti alleni e ti valuti meglio

Qui gli LLM sono incredibili:

• possono generare esercizi graduati di difficoltà

• spiegarti passo passo come risolverli

• mostrarti errori comuni

• offrirti quiz per il ripasso

• aiutarti a fare “retrieval practice”, la tecnica più efficace per imparare

davvero

Studiare informatica significa anche saper affrontare problemi — e gli LLM sono

eccellenti sparring partner.

Cosa NON devono fare gli LLM
Questa dispensa ti aiuta anche a non cadere nelle trappole più comuni.

Gli LLM non sono:

• una fonte assoluta e infallibile

• un modo per evitare la fatica

• un sostituto dello studio personale

• un generatore di elaborati da “copia-incolla”

Sono strumenti potenti se guidati con attenzione, come un buon compilatore:

se gli dai istruzioni sbagliate, il risultato sarà sbagliato.

Come usare questa dispensa

La dispensa è organizzata così:

• una breve introduzione al metodo Smart Learning Design, che ti mostra

come strutturare lo studio usando gli LLM;

• una sezione con alcuni insegnamenti del CdL in Informatica, con esempi

concreti di prompt, esercizi, schemi e strategie;

• una parte finale dedicata alla metacognizione: cosa hai imparato, cosa

devi ancora rafforzare, come migliorare.

•

SEZIONE 1 — Come imparare con l’AI: il metodo Smart Learning

Design (SLD)

Perché ti serve un metodo

Studiare informatica non è solo memorizzare definizioni o imparare il codice a

memoria. Significa capire, legare concetti, risolvere problemi, spiegare,

applicare. Per fare tutto questo in modo efficace ti serve una cosa che troppo

spesso manca:

un metodo strutturato per imparare.

Il metodo Smart Learning Design (SLD) ti accompagna in 8 passi semplici,

che puoi applicare a qualsiasi insegnamento — da Programmazione I ad Analisi

Matematica II.

E la cosa bella?

Ogni passo può essere potenziato dai LLM, se impari a usarli bene (ed è proprio

il senso di questa dispensa).

Le 8 fasi del metodo SLD

(per ogni fase, troverai: cosa significa + come usarla nel tuo studio + un esempio

di prompt)

Cosa vuoi imparare?

La domanda più difficile di tutte. Ma se non chiarisci il tuo obiettivo, studierai in

modalità vagabonda.

 Qui userai il LLM per definire il tuo perché, cioè cosa vuoi sapere o saper

fare.

Prompt esempio:

“Aiutami a definire un obiettivo SMART per lo studio di Architettura degli

Elaboratori. Fammi una domanda alla volta.”

Esplorare

È la fase del primo contatto: fai domande semplici, ingenue, “da curioso”.

 Qui lasci lavorare il tuo Sistema 1 (intuizione, curiosità) e usi il LLM per:

• capire i concetti base

• chiedere metafore

• cercare esempi

• avere confronti e analogie

• visualizzare schemi

Prompt esempio:

“Spiegami in modo semplice cosa sono gli autovalori. Fammi poi una metafora e

un esempio pratico.”

Rielaborare

Ora devi costruire senso.

Non basta aver letto o ascoltato: devi trasformare il materiale in strutture.

 Qui userai il LLM per:

• creare mappe cognitive

• sintetizzare appunti

• trasformare informazioni in tabelle

• costruire glossari

• generare domande guida

Prompt esempio:

“Organizza questi appunti in una tabella chiara sui tipi di strutture dati. Poi

genera 10 domande guida.”

Applicare

È il momento di sporcarsi le mani. In informatica, applicare significa provare,

sbagliare, capire dove, correggere.

 Il LLM qui ti aiuta a:

• scomporre esercizi complessi in piccoli step

• mostrarti errori comuni

• verificare se un passaggio è corretto

• simulare ciò che faresti in laboratorio

•

Prompt esempio:

“Scomponi questo esercizio di Programmazione II in passaggi chiari. Non darmi

la soluzione: fammi procedere uno step alla volta.”

Discutere

Imparare significa anche vedere punti di vista diversi.

 Il LLM può:

• aiutarti a formulare tesi e antitesi

• mostrarti fallacie logiche

• farti ragionare su alternative

Prompt esempio:

“Quali sono i principali argomenti pro e contro le memorie dinamiche?”

Produrre

Qui dimostri davvero ciò che sai: scrivi, spieghi, progetti, implementi.

 Il LLM ti aiuta a:

• strutturare un elaborato

• generare outline

• commentare codice

• migliorare chiarezza e precisione

Prompt esempio:

“Aiutami a progettare la struttura di una relazione sulla pipeline di un processore

a 5 stadi.”

Consolidare

È il momento del ripasso intelligente. Non basta “rileggere”: devi recuperare

attivamente.

 Il LLM può:

• generare quiz personalizzati

• simulare un mini-esame

• creare flashcard

Prompt esempio:

“Fammi 10 quiz a risposta multipla sui protocolli di rete, dal più facile al più

difficile.”

Cos’ho imparato? (Metacognizione)

L’informatica è piena di concetti che tornano, si intrecciano, si ricombinano.

Qui ti fermi e ti chiedi: “Cosa ho capito davvero? Cosa devo rinforzare?”

Il LLM può guidarti con domande di riflessione.

Prompt esempio:

“Fammi 5 domande per capire se ho davvero compreso la differenza tra

paginazione e segmentazione.”

📘 ARCHITETTURA DEGLI ELABORATORI

A. Come un LLM può essere di supporto in questo corso

Architettura può sembrare “astratta”, ma è in realtà molto visiva e strutturata.

Un LLM può esserti utile per:

• capire architetture complesse attraverso schemi e diagrammi (pipeline,

bus, memoria)

• ottenere metafore e analogie per chiarire concetti difficili (cache, ALU,

branching)

• confrontare tecnologie (CISC vs RISC, pipeline vs superscalare)

• scomporre problemi di laboratorio

• spiegare passo passo il funzionamento di un ciclo istruzione

È come avere un assistente che ti restituisce il concetto con il filtro più adatto a

te.

B. ESPLORARE – Capire i concetti fondamentali

Prompt semplici e diretti per chi vuole orientarsi:

Prompt 1 – “Spiegamelo semplice”

“Spiegami in modo molto chiaro cos’è la pipeline di un processore. Fai esempi e

usa una metafora.”

Prompt 2 – “Fammi capire cosa è davvero importante”

“Quali sono i concetti fondamentali di Architettura degli Elaboratori che uno

studente deve conoscere?”

Prompt 3 – “Confronti utili”

“Confronta memorie statiche e dinamiche in una tabella.”

Prompt 4 – “Visualizzazioni”

“Mostrami uno schema testuale del ciclo di funzionamento di una CPU.”

C. RIELABORARE – Trasformare quello che sai

Qui rendi più solido ciò che stai imparando.

Prompt 1 – “Fammi una mappa cognitiva”

“Genera una mappa testuale che organizzi: CPU, memoria, bus, I/O, pipeline e

cache.”

Prompt 2 – “Glossario intelligente”

“Crea un glossario dei 15 termini più importanti di Architettura degli Elaboratori,

con definizioni brevi.”

Prompt 3 – “Domande guida per studiare”

“Fammi 10 domande guida per capire meglio la gerarchia della memoria.”

D. APPLICARE – Esercizi step-by-step

Gli studenti spesso trovano difficile il passaggio dalla teoria alla pratica.

Prompt 1 – “Esercizio scomposto”

“Scomponi questo esercizio sulla pipeline in passaggi chiari. Non darmi la

soluzione finale.”

(incolli l’esercizio)

Prompt 2 – “Debug concettuale”

“Questi passaggi sono corretti per descrivere un ciclo di fetch-decode-execute?

Indica eventuali errori.”

Prompt 3 – “Errori comuni”

“Quali sono gli errori più frequenti che gli studenti fanno quando studiano la

gerarchia della memoria?”

E. RIPASSARE – Quiz, flashcard, mini-esami

Qui il LLM diventa un tutor per il recupero attivo.

Prompt 1 – Quiz progressivi

“Fammi 10 domande a risposta chiusa sulla memoria cache, da facile a difficile.”

Prompt 2 – Mini-esame orale

“Simula un orale di Architettura degli Elaboratori. Fai una domanda per volta.”

Prompt 3 – Flashcard

“Genera 20 flashcard sui concetti principali di CPU, bus e memoria.”

F. Mini-esercizi con difficoltà crescente –

Esercizi

LIVELLO 1 — BASE

Perfetti per iniziare, capire i concetti fondamentali e verificare la comprensione

iniziale.

Esercizio 1 — Il ciclo di Von Neumann

Obiettivo: capire le fasi base del fetch-decode-execute.

Prompt da inserire nella dispensa:

“Spiegami il ciclo di Von Neumann come se lo dovessi raccontare a uno studente

delle superiori. Poi fammi 3 domande per verificare se ho capito.”

Esercizio 2 — I componenti principali della CPU

Obiettivo: identificare ALU, CU e registri.

Prompt:

“Genera uno schema testuale che descrive ALU, Control Unit e registri. Poi

chiedimi di completare una tabella con le loro funzioni.”

Esercizio 3 — Pipeline: capire cosa succede

Obiettivo: familiarizzare con i 5 stadi classici.

Prompt:

“Descrivi cosa succede all’istruzione ADD R1, R2, R3 in ciascuno dei 5 stadi della

pipeline. Usa un linguaggio semplice.”

LIVELLO 2 — INTERMEDIO

Perfetti per consolidare, applicare e collegare più concetti.

Esercizio 4 — Conflitti di pipeline (hazards)

Obiettivo: riconoscere data hazard, control hazard e structural hazard.

Prompt:

“Dammi un esempio concreto di ciascun tipo di hazard nella pipeline. Poi fammi

risolvere 3 esercizi dove devo identificare l’hazard corretto.”

Esercizio 5 — Cache mapping

Obiettivo: capire direct mapped, fully associative e set associative.

Prompt:

“Confronta i tre tipi di mapping in una tabella. Poi dammi 5 indirizzi di memoria

e chiedimi in quale blocco andrebbero in una cache direct mapped.”

LIVELLO 3 — AVANZATO

Perfetti per studenti che vogliono sfidarsi, prepararsi a esami o a un orale.

Esercizio 6 — Performance della pipeline

Obiettivo: calcolare speedup, ciclo di clock, throughput.

Prompt:

“Dammi un esercizio dove devo calcolare lo speedup ottenuto pipelining un

processore non pipeline. Guidami con domande, non darmi mai la soluzione

finché non rispondo.”

Esercizio 7 — Branch Prediction

Obiettivo: ragionare sul misprediction penalty.

Prompt:

“Fammi un problema avanzato sul branch prediction, includendo tassi di

misprediction e penalty.”

Esercizio 8 — Trade-off progettuali

Obiettivo: ragionare in profondità su scelte architetturali.

Prompt:

“Simula un esercizio orale: ‘Se aumenti la dimensione della cache, quali sono i

pro e contro dal punto di vista di latenza, costo e consumo energetico?’

Fammi prima proporre una risposta, poi correggila.”

Argomento 1 – Sistemi di numerazione

Contenuti teorici

• Sistema decimale, binario, esadecimale

• Rappresentazione posizionale dei numeri

• Conversioni:

o Binario ↔ Decimale

o Binario ↔ Esadecimale

o Decimale ↔ Binario

• Somma binaria con e senza riporto

Esercizi proposti

Esercizio 1 – Conversione binario → decimale

Convertire i seguenti numeri binari in decimale:

1. 101011₂

2. 11010₂

3. 100111₂

4. 111001₂

5. 1000001₂

Suggerimento: usare i pesi delle potenze di 2.

Esercizio 2 – Conversione decimale → binario

Convertire i seguenti numeri decimali in binario:

1. 13₁₀

2. 27₁₀

3. 42₁₀

4. 58₁₀

5. 100₁₀

Suggerimento: applicare il metodo delle divisioni successive per 2.

Esercizio 3 – Conversione binario ↔ esadecimale

A) Binario → esadecimale

Convertire:

1. 10101110₂

2. 11110000₂

3. 11001001₂

Suggerimento: dividere il binario a gruppi di 4 bit.

Esercizio 4 – Conversioni combinate

Convertire:

1. 5A₁₆ in decimale

2. 1110101₂ in esadecimale

3. 94₁₀ in binario

4. 11001100₂ in decimale

5. 2F₁₆ in binario

Suggerimento: eseguire conversioni intermedie (ad esempio HEX → BIN →

DEC).

Esercizio 5 – Somma binaria

Eseguire le seguenti addizioni binarie:

1. 1011₂ + 1101₂

2. 10010₂ + 01101₂

3. 11101₂ + 10111₂

4. 110011₂ + 001101₂

5. 101010₂ + 010111₂

Suggerimento: ricordare le regole base:

A B Riporto Somma

0 0 0 0

0 1 0 1

1 0 0 1

A B Riporto Somma

1 1 1 0

Indicazioni metodologiche per gli studenti

Come studiare i sistemi di numerazione

1. Comprendere il meccanismo posizionale

o Ogni cifra pesa una potenza della base.

o In binario: potenze di 2

o In esadecimale: potenze di 16

2. Memorizzare le corrispondenze fondamentali

Esadecimale ↔ Binario:

HEX BIN

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

HEX BIN

7 0111

8 1000

9 1001

A 1010

B 1011

C 1100

D 1101

E 1110

F 1111

Allenarsi molto sulle somme

• Spesso è la parte più “meccanica”, ma fondamentale per capire il

funzionamento delle ALU.

Esercizi interattivi

Binary Practice

• https://www.binarypractice.com/

o Ottimo per conversioni e somme.

RapidTables – Converter

• https://www.rapidtables.com/convert/number/

o Per verificare risultati.

Argomento 2 – Rappresentazione dell’informazione

Contenuti trattati

• Bit, byte, word, double word

• Interi senza segno su n-bit

• Rappresentazione in complemento a 2 (interi con segno)

• Rappresentazione dei caratteri – ASCII

Esercizi proposti

Esercizio 1 – Bit, Byte, Word, Double Word

Rispondere alle seguenti domande:

1. Quanti bit ci sono in:

o a) 3 byte

o b) 5 word da 16 bit

o c) 2 double word da 32 bit

2. Quanti byte servono per memorizzare:

o a) una sequenza di 200 bit?

o b) 10 numeri interi da 32 bit?

3. Un sistema a 64 bit utilizza word da 64 bit:

o Quanti byte occupa una word?

o Quante word posso memorizzare in 1 KB?

Obiettivo: comprendere le dimensioni delle unità base di informazione.

Esercizio 2 – Interi positivi senza segno su n-bit

1. Qual è il massimo valore rappresentabile usando:

o a) 8 bit

o b) 12 bit

o c) 16 bit

2. Rappresentare su 8 bit senza segno i numeri:

https://www.rapidtables.com/convert/number/

o 25

o 87

o 145

3. Quale valore decimale rappresenta:

o 10101101₂

o 00011110₂

Esercizio 3 – Complemento a 2 (n-bit)

Parte A – Intervallo

1. Trovare l’intervallo di numeri rappresentabili su:

o a) 8 bit

o b) 12 bit

Parte B – Codifica

Rappresentare su 8 bit in complemento a 2:

1. +45

2. −18

3. −63

4. +90

 Procedura:

1. Scrivere il valore assoluto in binario

2. Invertire i bit

3. Aggiungere 1

Parte C – Decodifica

Convertire in decimale:

1. 11101011₂

2. 10011110₂

3. 01100101₂

Esercizio 4 – Codifica ASCII

1. Scrivere il codice ASCII (in binario e esadecimale) dei caratteri:

o 'A'

o 'a'

o '0'

o '9'

o '?'

2. Decodificare i seguenti byte ASCII:

o 01001000₂

o 01000001₂

o 00110010₂

3. Qual è la stringa ASCII associata alla sequenza:

4. 48 65 6C 6C 6F

(in esadecimale)

Indicazioni metodologiche

Strategie di studio

1. Prima capire i modelli

o senza segno → solo valori positivi

o complemento a 2 → positivi e negativi

2. Allenarsi molto con le conversioni

3. Fare sempre verifiche inverse

o Ricavare il decimale dal binario ottenuto per verificare la

correttezza.

Contenuti per approfondimento

Materiale teorico

Sistemi di numerazione e rappresentazione

• https://it.wikipedia.org/wiki/Rappresentazione_dei_numeri_al_calcolator

e

Complemento a due

• https://it.wikipedia.org/wiki/Complemento_a_due

Virgola fissa

• https://it.wikipedia.org/wiki/Virgola_fissa

Virgola mobile – IEEE 754

• https://it.wikipedia.org/wiki/IEEE_754

Codifica ASCII

• https://it.wikipedia.org/wiki/ASCII

Simulatori e strumenti

• IEEE 754 converter

https://www.h-schmidt.net/FloatConverter/IEEE754.html

• Binary & Complemento a 2 practice

https://www.binarypractice.com/

• ASCII Table interattiva

https://www.asciitable.com/

 Video YouTube

Cerca:

• “complemento a due spiegazione”

• “virgola mobile IEEE 754”

• “floating point architecture explained”

• “ASCII encoding explained”

Canali consigliati:

• Ingegneria Informatica

• UniBo LMS

https://it.wikipedia.org/wiki/Complemento_a_due
https://it.wikipedia.org/wiki/IEEE_754
https://it.wikipedia.org/wiki/ASCII
https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.asciitable.com/

• Computerphile (inglese)

 Argomento 3 – Algebra booleana e funzioni logiche

Contenuti

• Definizione di algebra booleana

• Operazioni fondamentali:

o Somma logica (OR)

o Prodotto logico (AND)

o Inversione (NOT)

• Tabelle di verità

• Teoremi di De Morgan

• Funzioni logiche

• Analisi di funzioni logiche

• Sintesi di funzioni logiche

• Mappe di Karnaugh

Esercizi Proposti

Esercizio 1 – Operazioni fondamentali e tabelle di verità

Parte A – Tavole base

Costruire le tabelle di verità delle seguenti operazioni:

1. A+B (OR)

2. A x B (AND)

3. A (NOT)

Parte B – Espressioni logiche

Compilare la tabella di verità della funzione:

F (A, B, C) = AB+AC

Obiettivo: comprendere il passaggio da espressione booleana a comportamento

logico.

Esercizio 2 – Teoremi di De Morgan

1. Applicare i teoremi di De Morgan e semplificare:

a) A+B

b) AB

c) A + B + C

d) ABC

2. Trasformare le seguenti espressioni usando solo porte NAND:

a) F = A + B

b) F = AB

Richiamo teorico:

A+B= A⋅× B =

AB = A + B

Esercizio 3 – Analisi di funzioni logiche

Data la funzione:

F (A,B,C)=ABC+AB+AB

Costruire la tabella di verità completa

Scrivere:

• Forma lista di mintermini

• Forma Somma di Prodotti

Obiettivo: passare dall’espressione al comportamento funzionale.

Esercizio 4 – Sintesi di funzioni

Data la seguente tabella di verità:

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Scrivere:

• Mintermini per cui F=1

• Espressione Somma di Prodotti

Semplificare l’espressione ottenuta

Obiettivo: passare da tabella a circuito ottimizzato.

Esercizio 5 – Mappe di Karnaugh

Data la funzione:

F(A,B,C)=∑m(1,3,5,7)F(A,B,C) = \sum m(1,3,5,7)F(A,B,C)=∑m(1,3,5,7)

Disegnare la mappa di Karnaugh a 3 variabili

Individuare:

• Raggruppamenti validi

• Termini semplificati

Scrivere la forma logica minima

Obiettivo: ridurre porte e complessità circuitale.

Indicazioni metodologiche

Linee guida

Procedere sempre così:

Espressione → Tabella di verità → Karnaugh → Espressione minima

Saper distinguere:

• Analisi

o Ho l’equazione ➝ trovo cosa fa

• Sintesi

o Ho il comportamento ➝ costruisco l’equazione

Suggerimenti operativi Karnaugh

• Raggruppare celle adiacenti in potenze di 2:

o 1, 2, 4, 8...

• Preferire gruppi più grandi possibile

• I gruppi possono sovrapporsi

• I bordi della mappa sono contigui

Risorse web di approfondimento

Teoria

• Algebra booleana

o https://it.wikipedia.org/wiki/Algebra_booleana

• De Morgan

o https://it.wikipedia.org/wiki/Leggi_di_De_Morgan

• Mappe di Karnaugh

o https://it.wikipedia.org/wiki/Mappa_di_Karnaugh

https://it.wikipedia.org/wiki/Algebra_booleana
https://it.wikipedia.org/wiki/Leggi_di_De_Morgan
https://it.wikipedia.org/wiki/Mappa_di_Karnaugh

Simulazioni ed esercizi

• Logisim Evolution(simulatore circuiti)

o https://github.com/logisim-evolution/logisim-evolution

• BoolSimplifier

o https://www.boolean-algebra.com/

• Mapa di Karnaugh interattiva

o https://www.dcode.fr/karnaugh-map

 Video didattici

Cerca su YouTube:

• “algebra booleana esercizi svolti”

• “mappe di Karnaugh spiegazione”

• “De Morgan NAND gates”

Canali consigliati:

• Ingegneria Informatica Uni

• UniBo LMS

• Computerphile

https://www.boolean-algebra.com/

