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Chapter 1

Introduction

A real valued function is Baire-1 if pointwise limit of a sequence of continuous func-
tions. This particular class of functions was introduced by Baire in his doctoral
thesis at at École Normale Supérieure in 1899 and from that moment it caught the
interest of several mathematicians.

H. Rosenthal was one of the first to study topological properties of the set of all
Baire-1 functions on a given Polish space, endowed with the point-wise topology.

After that he worked together with E. Odell, discovering that the existence of
Baire-1 members in the bidual of a separable Banach space is equivalent to prove
that that space contains an isomorphic copy of `1.

Even the Fields medal Jean Bourgain, focused part of his youth works on the
study of this classes of functions, improving the Theorems of Rosenthal and Odell.

He also introduced two subclasses of the set of all Baire-1 functions on a sepa-
rable Banach space, with the purpose to deepen the connection with `1.

The last part of this work is based on an original result of the author and his
supervisor, who studied the descriptive set nature of the two subclasses introduced
by Bourgain.
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1.1 Some basic facts
Definition 1.1. A topological space is said to be Polish if it is separable and
completely metrizable.

If X is a normed space, we denote by BX = {x ∈ X : ‖x‖X ≤ 1} the unit ball of
X.

The dual of X is the space of all bounded linear functionals on X, with the
operator norm and it is denoted by X∗. Analogously the bidual of X is defined as
the dual of X∗.

Remark 1.2. The dual of a normed space is always a Banach space, endowed with
the norm ‖f‖X∗ = sup{|f(x)| : x ∈ BX}.

Remark 1.3. Let X be a normed space. The map J : X → X∗∗ which associate
an element x ∈ X to the map

J(x) :X∗ → R
ϕ 7→ ϕ(x)

Is an injective isomorphism, and it is known as the canonical embedding of X
into X∗∗.

Throughout this work we will often consider X as a subspace of X∗∗ via the
canonical embedding, even if not explicitly indicated.

Definition 1.4. Let us recal that

• the weak topology on X is the weakest topology making all maps of X∗
continuous;

• the weak∗ topology on X∗ is the weakest topology making all maps of
J(X) ⊆ X∗∗ continuous.

Remark 1.5.

1. (xn)n∈N in X converges weakly to x ∈ X if and only if (ϕ(x)n)n∈N converges
to ϕ(x) for all ϕ ∈ X∗;

2. (ϕn)n∈N in X∗ weak∗-converges to ϕ ∈ X∗ if and only if (ϕn)n∈N pointwise-
converges to ϕ, i.e. limn ϕn(x) = ϕ(x) for all x ∈ X.

Let us recall that

`1 =

{
(xn)n∈N ⊆ R :

∑
i∈N

|xn| <∞
}
.

is a Banach space with the norm ‖x‖`1 =
∑

i∈N |xn|.



CHAPTER 1. INTRODUCTION 3

Remark 1.6. No element of `∗∗1 \ `1 is a weak∗ limit of a sequence of elements of `1.

Definition 1.7. IfX is a topological space, denote by C(X) the set of all continuous
real valued functions defined on X.

Remark 1.8. If X is a compact topological space, then C(X) with the norm

‖f‖∞ = sup
x∈X
|f(x)|

is a Banach space.

Let us denote by ω the first infinite ordinal, which corresponds to the sets of all
non-negative integers. If A is a non-empty set, denote by

Aω =
∏
n∈ω

A = {(an)n∈N ⊂ A}

If we see A with the discrete topology (i.e. every subset of A is open), we can endow
Aω with the product topology. Such topology is induced by the metric d(x, y) = 1

2n+1

where n ∈ ω is the first positive integer such that x(n) 6= y(n).

With the previous notations, the set 2ω = 0, 1ω is called the Cantor space.
Remark that the map

Φ: 2ω → R

(an)n 7→
∑
n

2an
3n+1

gives a homeomorphism from 2ω onto the usual Cantor space of [0, 1].

We now present two well-known Theorems in Functional Analysis. For details
about their proofs, we refer the reader the book [Meg98].

Theorem 1.9 (Banach-Alaoglu-Bourbaki). If X is a normed space, then BX∗ is
w∗-compact.

Theorem 1.10 (Goldstine). If X is a normed space, then J(BX) is weakly∗ dense
in BX∗∗.
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Chapter 2

Baire-1 function

Baire functions are functions obtained by transfinite iteration of the operation of
forming pointwise limits of sequences of continuous functions. They were introduced
by René-Louis Baire in 1899 in his doctoral thesis at École Normale Supérieure
([Bai99]). Other properties of this class of functions are also described in his book
"Leçons sur les fonctions discontinues, professées au collège de France" ([Bai05]).

The first part of this chapter is a short introduction on Baire-1 functions.
Afterwards we present an article by Rosenthal ([Ros77]), who worked on some topo-
logical properties of the set of all Baire-1 functions on a Polish space endowed with
the pointwise topology.

To conclude we illustrate the work [OR75] by Odell and Rosenthal, who found
out a strict connection in separable Banach spaces, between containing an isomor-
phic copy of `1 and having Baire-1 members in the bidual.

2.1 Baire class 1 functions
Definition 2.1. Let (X, d) be a complete metric space, a function f : X → R is
said to be Baire class 1 or simply Baire-1 if it is the pointwise limit of a sequence
of continuous functions (fn)n∈N : X → R.

We denote by B1(X) the set of all Baire-1 functions on X.

It is clear that every continuous function is Baire-1, however the converse is not
true. An example of Baire-1 function which is not continuous is the pointwise limit
of the sequence fn(x) = xn in [0, 1].

As the name suggests, there is a strong connection between Baire-1 functions
and Baire set category. Let us recall some basic definitions.

Definition 2.2. Let X be a topological space. A subset of X is said to be:



CHAPTER 2. BAIRE-1 FUNCTION 5

• nowhere dense if int(A) = ∅;

• meagre or Baire first category if it is a countable union of nowhere dense
sets;

• Baire second category if it is not meagre.

Definition 2.3. A topological space X is said to be a Baire space if each open
subsets of X is Baire second category.

Let us recall two well known Theorems by Baire. Their proofs can be found in
[Bai99].

Theorem 2.4 (Baire Category). Let X be a topological space. X is a Baire space
if and only if for all sequences of open dense subset of X (An)n∈N then

⋂
n∈|N An is

an open dense subset of X.

Theorem 2.5. Every complete metric space is a Baire space.

The following Theorem explains the reason of name of this class of functions.

Theorem 2.6. Let (X, d) be a complete metric space, let f : X → R a Baire-1
function. Then the set of points of discontinuity of f is Baire first category.

Actually, in [Bai05] Baire proved a stronger version of the previous Theorem.

Theorem 2.7 (Baire characterization Theorem). Let f : X −→ R. Then f belongs
to the first Baire class on X if and only if for every non-empty closed subset M of
X, f |M has a point of continuity relative to the topological space M .

2.2 Point-wise compact subsets of B1(X)

We now begin the description of the article [Ros77] by Rosenthal.
In his work he introduced a class of badly discontinous functions, which play a key
role in the proofs of the Theorems in this section.

Definition 2.8. Let Y be a topological space and f : Y −→ R. We say that f
satisfies the Discontinuity Criterion provided there is a non-empty subset L of
Y and r, δ ∈ R with δ > 0 so that

for every non empty relatively open subset U of L,
there are y, z ∈ U with f(y) > r + δ and f(z) < r

(2.1)

Definition 2.9. Let A,B be two infinite subsets of N. We say that A is almost
contained in B, and write A ⊂a B, when A ∩ (N \B) is finite.
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Notice that if (An)n∈N is a decreasing sequence of sets, it is easy to find an infinite
set B such that B ⊂a An for all n ∈ N. For instance, it is sufficient to choose one
element from each An.

Lemma 2.10. Let X be a Polish space, let (fn)n∈N : X −→ R be a pointwise bounded
sequence of functions that has no pointwise convergent subsequence. Then there are
N ⊂ N and r, δ ∈ R with δ > 0 such that for every infinite subset M ⊆ N there is
an x ∈ X satisfying

fm(x) > r + δ for infinitely many m ∈M and
fm(x) < r for infinitely many m ∈M

(2.2)

Proof. Let (rn, δn)n∈N be a enumeration of Q × Q+. Suppose that the thesis of
Lemma 2.10 is false, and choose M0 = N. Then there is an infinite subset M1 of M0

such that every x ∈ X fails to satisfy (2.2) with r = r0 and δ = δ0. By induction,
for all n ∈ N we can build an infinite subset Mn of Mn−1 such that every x ∈ X
fails to satisfy (2.2) with M = Mn, r = rn−1 and δ = δn−1. So we built a decreasing
sequence (Mn)n∈N of infinite subset of N, thus by the previous observation, there
exists a set M such that M ⊂a Mn for all n ∈ N. Therefore for every x ∈ X, there
is no pair (rn, δn) satisfying (2.2).
On the other hand, by assumption (fn)n∈N is pointwise bounded and has no pointwise
convergent subsequences, thus there is an x ∈ X such that

lim inf
n∈M

fn(x) < lim sup
n∈M

fn(x)

Now simply choose r and δ > 0 such that

lim inf
n∈M

fn(x) < r < r + δ < lim sup
n∈M

fn(x)

Hence x satisfies (2.2), which is a contradiction.

Let us recall that a topological space is said second-countable if it has a count-
able base of open sets. Remember that a separable metrizable space is always
second-countable.

Remark 2.11. IfX is a second-countable topological space, then any strictly mono-
tone net (Uα)α<γ of open subsets of X has countable length, i.e. γ ≤ ω0.

Proof. Let (Bn)n∈N a countable base for X. By definition we can write each Uα as
union (at most countable) of elements of the base. By strict monotony, for each
α < γ there is a Bnα ⊆ Uα+1 \ Uα and of course all such Bnα are pairwise distinct.
But for this to be true it should be γ ≤ ω0.
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Theorem 2.12. Let (fn)n∈N : X −→ R be a pointwise bounded sequence of functions
that has no pointwise convergent subsequence. Then there exists a non-empty subset
L of X and a subsequence (fnk)k∈N pointwise convergent on L towards a function f
which satisfies the Discontinuity Criterion.

Proof. By Lemma 2.10 there are N ⊂ N and r, δ ∈ R with δ > 0 such that (2.2)
holds. For every infinite M ⊆ N let us define

K(M) = {x ∈ X satysfing (2.2)} (2.3)

Observe that if M ′ ⊂a M then K(M ′) ⊂ K(M).
Claim 1 : there is an M ⊆ N so that

K(M ′) = K(M) for all M ′ ⊂a M (2.4)

Suppose Claim 1 is false, then using transfinite induction we can construct a family
(Mα)α<ω1 of infinite subsets of N so that for all α < β < ω1 we have Mβ ⊂a Mα

and K(Mβ) ⊂ K(Mα). Indeed choose M0 = N ; then for successor ordinals, having
chosen Mα, simply choose Mα+1 ⊂a Mα with K(Mα+1) 6= K(Mα); for limit ordinals
γ < ω1 instead choose Mγ almost contained in Mα for all α < γ.
Now observe that the corresponding family (K(Mα))α<ω1 would be a strictly de-
scending sequence of closed set, in contradiction with Remark 2.11. This concludes
the proof of Claim 1.
Now choose an M satisfying (2.4). We want to show the following:

Claim 2 : for every infinite M ′ ⊂M and every non-empty relatively open subset
U of K(M) there exists an infinite M ′′ ⊆M ′ and y, z ∈ U such that

lim
m∈M ′′

fn(y) ≥ r + δ and lim
m∈M ′′

fn(z) ≤ r (2.5)

Let us fix M ′ and U as indicated above. By definition of K(M ′) and (2.4) there is
an y in U such that fn(y) > r + δ for infinitely many n in M ′. Since (fn(y))n∈M ′ is
a bounded sequence in R, we can choose a subset M1 of M ′ such that (fn(y))n∈M1

converges; again by definition of K(M1) and (2.4) there is a z in U such that
fn(y) < r for infinitely many n in M1. To conclude, we simply choose M ′′ ⊆ M1

such that (fn(z))n∈M ′′ converges.
To conclude, let (Un)n∈N be a base for the topology of K(M). By Claim 2, for

each n ∈ N we may choose Mn ⊆ N , yn, zn ∈ Un so that 2.5 holds. We may suppose
Mn+1 ⊆Mn for all n ∈ N. Now choose Q an infinite subset of N such that Q ⊂a Mn

for all n ∈ N. Let us define

L = {yn, zn : n ∈ N}

and
f(x) = lim

n∈Q
fn(x)
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for all x ∈ L. Therefore L is a dense subset of K(M); so if U is a non-empty relative
subset of L, there is a V relatively open in K such that V ∩L = U , hence there is an
i ∈ N such that Ui ⊆ V . Thus f(yi) ≥ r + δ and f(zi) ≤ r and yi, zi ∈ Ui ∩ L ⊆ U .
Therefore f satisfies the Discontinuity Criterion on L and (fnk)k∈N = (fm)m∈Q is
the desired subsequence.

Corollary 2.13. If (fn)n∈N and (fnk)k∈N are as in Theorem 2.12, then (fnk)k∈N has
no limit points in B1(X) with the topology of point-wise convergence.

Proof. If g is any limit point of (fnk)k∈N, then g = f on L, thus satisfies the Disconti-
nuity Criterion. Hence g fails to have a point of continuity in some closed non-empty
subset of X, so by Theorem 2.7 g 6∈ B1(X).

Now we can state and prove the main Theorem of Rosenthal’s article.

Theorem 2.14. Let X be a Polish space and let F be a subset of B1(X). Then the
following are equivalent:

1. F is relatively compact;

2. Every countable infinite subset of F has a limit point in B1(X);

3. Every sequence of elements of F has a convergent subsequence.

Proof. The implications 1. =⇒ 2. and 3. =⇒ 2. are trivial.
2. =⇒ 3. It is an immediate consequence of Corollary 2.13 and the fact that if

2. holds then F is pointwise bounded.
To conclude, it is sufficient to prove that 2. =⇒ 1. Suppose 2. holds but 1.

does not. Then F is pointwise bounded, hence the pointwise closure of F is a subset
of
∏

x∈X [−hx, hx], where hx = sup{|f(x)| : f ∈ F}. So by Tychonoff Theorem the
pointwise closure of F is compact in XR with the product topology. Therefore, since
F is not relatively compact, there must exist a function f in the pointwise closure
of F but not Baire-1. By Theorem 2.7, there exists a non-empty closed subset M
of X such that f |M has no point of continuity relative to the topological space M .

Claim: f satisfies the Discontinuity Criterion.
For all n ∈ N let us define

An = {x ∈M : ∀U neighbourhood of x ∃ y, z ∈ U such that f(y)− f(z) > 1/n}

Since f |M has no point of continuity it follows M =
⋃
n∈NAn. Moreover each An

is closed by definition, so by Baire category Theorem 2.4 there exists n0 ∈ N such
that An0 has non-empty interior, let us call it U0. Let δ = 1/n0, then observe that
for each non-empty relatively open subset U of M0, U ∩ U0 is a non-empty open
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neighbourhood of x and so there are y, z ∈ U such that f(y) − f(z) > 1/n. Let
Q = (rn)n∈N be an enumeration of the rationals and let

Bn = {x ∈M0 : ∀U neighb. of x ∃ y, z ∈ U ∩M0 s.t. f(z) < rn, f(y) > 1/n0 + rn}

for all n ∈ N. From the previous observation it follows that M0 =
⋃
n∈NBn. Again

all Bn are closed, so by Theorem 2.4 there is n1 ∈ N such that Bn1 has non-empty
interior, let us call it U1. Also f satisfies the Discontinuity Criterion on L = U1,
with r = rn1 and δ = 1/n0.

Now let (Un)n∈N an open basis for the relative topology of L. By the Claim
for each n ∈ N there are yn, zn ∈ Un such that f(z) < r and f(yn) > r + δ. Let
Q = {yn, zn : n ∈ N}. Since Q is countable then RQ is a metric space, moreover
f is in the pointwise closure of F , so there is a sequence (fn)n∈N in F such that
limn∈N fn(q) = f(q) for all q ∈ Q. Since Q is dense in L, it follows that f |Q
satisfies the Discontinuity Criterion in Q. To conclude, suppose g is a cluster point
of (fn)n∈N, then g|Q = f |Q, hence g has non point of continuity on Q, so by Theorem
2.7 g is not Baire-1. Thus (fn)n∈N has no Baire-1 limit points, so 2. fails to hold, a
contradiction.

2.3 A double-dual characterization of separable Ba-
nach spaces containing `1

In this section we will describe the article [OR75], by E. Odell and H. Rosenthal.

Let X be separable Banach space and denote withK the unit ball of X∗ endowed
with the w∗-topology, then K is a Polish space (see Remark 2.16).

If we see X as canonical embedded in his bidual, from well known facts about
the weak∗ topology, it is known that X ⊆ C(K). Also elements in X∗∗ \X are never
continuous functions on K.

For this reason one can ask if there are separable Banach spaces where some
elements in X∗∗ \X could be in B1(K). Odell and Rosenthal in [OR75] proved that
X∗∗ = B1(K) if and only if X contains no subspaces isomorphic to `1.

Proposition 2.15. If X is a separable Banach space, then (BX∗ , w
∗) is metrizable.

Proof. Let (xn)n∈N be a countable dense set in X. Let us define

d(x∗, y∗) =
∞∑
n=1

1

2n
|x∗(xn)− y∗(xn)|

It is not difficult to see that d is a metric on (BX∗ , w
∗) and that the topology induced

by d on (BX∗ , w
∗) is equivalent to the w∗-topology.
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Remark 2.16. Let X be separable Banach space. Throughout this work we will
denote by K the unit ball of X∗ endowed with the w∗-topology. By Theorem 1.9
K is compact in (X∗, w∗) and by Proposition 2.15 K is metrizable. From this two
properties it follows easily that K is also complete and w∗-separable. Thus K is a
Polish space.

Definition 2.17. If X is a separable Banach space, we say that x∗∗ ∈ X∗∗ is a
Baire-1 member of X∗∗ is it is the weak∗-limit of a sequence of elements of X.

We denote by B1(X) the set of all Baire-1 members of X∗∗.

Definition 2.18. Suppose that K is a nonempty compact subset of a locally convex
space E, and that µ is a probability measure on K (i.e µ is a non-negative regular
Borel measure on K, with µ(K) = 1). A point x ∈ E is said to be the barycenter
of µ, if

f(x) =

∫
K

fdµ

for every continuous linear functional f on E.

Theorem 2.19 (Choquet). Suppose that K is a compact convex subset of a locally
convex space E, and that µ is a probability measure on K with barycenter k0, then

µ(f) = f(k0)

for each affine function f of first Baire class on K.

The following Lemma is a consequence of Choquet Theorem.

Lemma 2.20. Let X a Banach space and K = (BX∗ , w
∗). Then f ∈ X∗∗ is a

Baire-1 member of X∗∗ if and only if f |K is a Baire-1 function on K.

Lemma 2.21. Let K be a non-empty compact space and f a bounded real-valued
function on K having no points of continuity. Then f satisfies the Discontinuity
Criterion.

Proof. For each n ∈ N, let

An = {x ∈ K : for all U neighborhood of x ∃ y, z ∈ U with f(y)− f(z) > 1/n}

Since f has no points of continuity,

K =
⋃
n∈N

An

By definition An is closed for all n ∈ N, so by the Baire category theorem 2.4 some
A0 has non-empty interior, U0. Let K0 = U0 and δ = 1/no. We now have that, for
any non-empty relatively open subset U of K0, U ∩ U0 is a non-empty open subset
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of K0, and hence there exist y, z ∈ U with f(y)− f(z) > δ. Now let (rn)n∈N be an
enumeration of Q and define

B = {x ∈ K0 : for all U neighborhood of x, there are y, z ∈ U ∩K0

with f(z) < rn and r + δ < f(y)}

Since equation 2.1 holds for every non-empty open subset of K0, K0 =
⋃
n∈NBn.

Again, all Bn’s are closed by definition, so a second application of the category
theorem implies there is n1 such that Bn1 has non-empty interior V . Then, putting
L = V and r = rn1 , we have the thesis.

The following proposition can be deduced putting together some lemmas and a
proposition contained in another article by Rosenthal ([Ros74]). The aim of that
article was to find a first characterization of Banach spaces containing `1, and Rosen-
thal proved that were all and only that containing a bounded sequence with no
weak-Cauchy subsequences.

Proposition 2.22. Let X be a topological space. If f : X → R satisfies the Discon-
tinuity Criterion and there exists a family G of continuous and uniformly bounded
functions on X such that f is in the pointwise closure of G. Then there exists
a sequence (gn)n∈N in G that is equivalent to the usual `1 basis, in the supremum
norm.

Proof. By definition of Discontinuity Criterion, there are L ⊆M closed and r, δ ∈ R
with δ > 0 so that 2.1 holds.

Claim 1 : there is a sequence (gn)n∈N in G such that, if we define

An = {x ∈ L : gn(x) > r + δ} and Bn = {x ∈ L : gn(x) < r}

then for all F1, F2 finite disjoint subsets of N⋂
F1

An ∩
⋂
F2

Bn 6= ∅. (2.6)

We will use the notation −An = Bn so in order to prove equation 2.6 it is sufficient
to see that

n⋂
i=1

εiAi 6= ∅ for all n ∈ N and for all ε1 . . . , εn ∈ {±1}.

Let’s prove the claim by induction. If n = 1, f satisfies the Discontinuity Crite-
rion, thus there are y1, y2 ∈ L such that f(y1) > r+ δ and f(y2) < r. By hypothesis
f is in the pointwise closure of G, so there is g1 ∈ G such that g(y1) > r + δ and
g(y2) < r, hence ±A1 6= ∅ .
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Now suppose there are g1, . . . , gn−1 such that
⋂n−1
i=1 εiAi 6= ∅ for all ε1 . . . , εn−1 ∈

{±1}. Let’s fix ε = (ε1 . . . , εn−1) ∈ {±1}n−1 then
⋂n−1
i=1 εiAi is a relative open sub-

set of L, so by the Discontinuity Criterion there are yε, zε ∈
⋂n−1
i=1 εiAi such that

f(yε) > r+δ and f(zε) < r, so by assumption there is gn ∈ G such that gn(yε) > r+δ
and gn(zε) < r for all ε ∈ {±1}n−1. Thus

n⋂
i=1

ε1Ai ∩ εnAn 6= ∅

for all ε1 . . . , εn ∈ {±1} and so Claim 1 is proved.
Claim 2 : (gn)n∈N is equivalent to the usual `1 basis.

We need to prove that there exists c1, c2 ∈ R+ such that for all (an)n∈N in R, with
{n : an 6= 0} finite, we have

c1

∥∥∥∥∑
n∈N

anen

∥∥∥∥
`1

≤
∥∥∥∥∑
n∈N

angn

∥∥∥∥
∞
≤ c2

∥∥∥∥∑
n∈N

anen

∥∥∥∥
`1

(2.7)

By assumption G is uniformly bounded, so there is c ∈ R+ such that ‖gn‖∞ ≤ c for
all n ∈ N, hence ∥∥∥∥∑

n∈N

angn

∥∥∥∥
∞
≤ c

∑
n∈N

|an| = c

∥∥∥∥∑
n∈N

anen

∥∥∥∥
`1

Therefore we are left to prove the first of the two inequalities in (2.7). In order to do
so let us fix a sequence (cn)n∈N, that WLOG we can assume such that

∑
n∈N |ci| = 1

(otherwise simply put cn = cn/
∑

i∈N |ci| for all n ∈ N and the following inequalities
will remain true). It is sufficient to find an element s ∈ L such that

δ

2
=
δ

2

∥∥∥∥∑
n∈N

cnen

∥∥∥∥
`1

≤
∣∣∣∣∑
n∈N

cngn(s)

∣∣∣∣ ≤ ∥∥∥∥∑
n∈N

cngn

∥∥∥∥
`1

. (2.8)

Let us consider C = {i ∈ N : ci > 0} and D = {i ∈ N : ci < 0}, which are two finite
disjoint subsets of N, so by (2.6) there exists an element x ∈

⋂
n∈C An∩

⋂
n∈D Bn and

an element y ∈
⋂
n∈D An ∩

⋂
n∈C Bn. Suppose r > 0 (the case r < 0 is analogous),

and consider D′ = {i ∈ B : gi(x) > 0}, then∑
n∈D

cngn(x) ≥
∑
n∈D′

cngn(x) ≥ −r
∑
n∈D′
|cn| ≥ −r

∑
n∈D

|cn|

and similarly
−
∑
n∈C

cngn(y) ≥ −r
∑
n∈C

|cn|

Hence∑
n∈N

cngn(x) =
∑
n∈C

cngn(x) +
∑
n∈D

cngn(x) > (r + δ)
∑
n∈C

|cn| − r
∑
n∈D

|cn| (2.9)
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and

−
∑
n∈N

cngn(y) = −
∑
n∈C

cngn(y)−
∑
n∈D

cngn(y) > −r
∑
n∈C

|cn|+ (r + δ)
∑
n∈D

|cn| (2.10)

Therefore, adding up (2.9) and (2.10) we obtain∑
n∈N

cngn(x)−
∑
n∈N

cngn(y) > δ
∑
n∈N

|cn| = δ

thus
∑

n∈N cngn(x) > δ/2 or −
∑

n∈N cngn(y) > δ/2 so (2.8) holds chosing s = x or
s = y.

We are now ready to prove the main result of [OR75].

Theorem 2.23. A separable Banach space X contains a subspace isomorphic to
`1 if and only if there exists an element x∗∗ ∈ X∗∗ such that there is no sequence
(xn)n∈N in X that weakly∗ converges to x∗∗.

Proof. The "only if" assertion is immediate form Remark 1.6.
Now assume that there exists an element x∗∗ ∈ X∗∗ such that there is no sequence

(xn)n∈N in X that weakly∗ converges to x∗∗, i.e. x∗∗ is not a Baire-1 member of
X∗∗. Let K = (BX∗ , w

∗). By Lemma 2.20 x∗∗|K is not in B1(K), hence by Baire
characterization theorem 2.7 there is a closed subspace M of K such that x∗∗|M has
no point of continuity. Thus by Lemma 2.21 f satisfies the Discontinuity Criterion
on M , i.e there are L ⊆M closed and r, δ ∈ R with δ > 0 so that 2.1 holds. WLOG
we can suppose ‖x∗∗‖ = 1, so by Goldstine Theorem 1.10 there is a net in BX weak∗
convergent to x∗∗. Consequently, if we define

G = {g ∈ C(L) : there is x ∈ BX such that g = x|L}

clearly x∗∗|L is in the pointwise closure of G. Hence, by Proposition 2.22 there is a
sequence (gn)n∈N in G equivalent to the usual `1 basis. Now, by definition of G, there
is a sequence (xn)n∈N in BX such that gn = xn|L for all n ∈ N, then the subspace
span{xn : n ∈ N} of X is isomorphic to `1.

The previous Theorem can be put in a broader characterization.

Theorem 2.24 (Rosenthal-Odell). Let X be a separable Banach space. Then the
following assertions are equivalent:

1. X contains an isomorphic copy of `1;

2. There is x∗∗ ∈ X∗∗ which is not weak∗ limit of any sequence in X;

3. There is a bounded sequence (xn)n∈N in X with no weak-Cauchy subsequences;
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4. There is a bounded sequence (x∗∗n )n∈N in X∗∗ with no weak∗-Cauchy subse-
quences.

Proof. 1. ⇐⇒ 2. is Theorem 2.23
4. =⇒ 3. and 1 =⇒ 4 are trivial.
3. =⇒ 1. By assumption there is a sequence (gn)n∈N ⊆ X∗∗ with ‖gn‖X∗∗ ≤ 1

and with no weak∗-Cauchy subsequences. Define

F = {x∗∗|K : x∗∗ ∈ X∗∗, ‖x∗∗‖X∗∗ ≤ 1}

where fn = gn|K ∈ F for all n ∈ N, has no pointwise convergent subsequences.
Hence, by Theorem 2.12 there exists a subset L of K and a subsequence (fnk)k∈N
pointwise convergent on L towards a function f which satisfies the Discontinuity
Criterion. By Goldstine Theorem 1.10 there is a sequence (hnk)k∈N = (xnk |K)k∈N
with xnk ∈ BX for all k ∈ N pointwise convergent to f . Let

G = {g ∈ C(L) : there is x ∈ BX such that g = x|L}

therefore f is in the pointwise closure of G and we can conclude applying Propostion
2.22.
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Chapter 3

Bourgain Theorem on Lavrentiev
index

In [Bou80a] Bourgain worked on an interesting result about the Lavrentiev index.
The main Theorem of this work is "an improvement of Theorem 2.24, relating the
topological nature of double-dual elements to the `1−ordinals of the space" as him-
self writes in his article.

First we need an introduction on trees.

3.1 Trees
The concept of a tree is a basic combinatorial tool in descriptive set theory. What
is referred to as a tree in this subject is not, however, the same notion as the one
used either in graph theory.

Definition 3.1. Let X be an arbitrary set. A tree T on X is a subset of
⋃
n∈NX

n

such that if (x1, . . . , xn+1) ∈ T then (x1, . . . , xn) ∈ T .

Definition 3.2. A tree T on X is called well-founded if there is no sequence
(xn)n∈N in X such that (x1, . . . , xn) ∈ T for all n ∈ N.
A tree T on X is called ill-founded if it is not well-founded.

We will now describe the process of pruning a tree using transfinite induction.
Let’s define T 0 = T . For successor ordinals, suppose Tα is already defined and let

Tα+1 =
⋃
n∈N

{(x1, . . . , xn) ∈ Xn : there is an x ∈ X such that (x1, . . . , xn, x) ∈ T}

For limit ordinals define instead

T γ =
⋂
α<γ

Tα
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Notice that this way the Tα are strictly decreasing, hence for α large enough, Tα
will be empty.

Definition 3.3. If T is a well-founded tree on X, the order of T , is the smallest
ordinal o[T ] such that T o[T ] = ∅. If T is ill-founded we say that o[T ] = ω1.

Theorem 3.4 (Kuren-Martin). Let T a well-founded tree on a Polish space X, then
o[T ] < ω1.

If T is a tree on X, we will denote by Tn the subset T ∩ Xn, i.e. the set of all
sequence of length n in T .

Definition 3.5. Let S be a tree on X and T be a tree on Y . A map ρ : S → T is
called regular if it preserves the length and the order, i.e.

• ρ(Sn) ⊆ Tn

• if ρ(x1, . . . , xn, xn+1) = (y1, . . . , yn, yn+1) then ρ(x1, . . . , xn) = (y1, . . . , yn)

Proposition 3.6. If T and S are two well-founded trees and if there is a regular
map ρ : S → T then o[S] ≤ o[T ].

Proposition 3.7. Let T ∈ WF with o[T ] > 1. Then

o[T ] = sup
k∈ω

o[T (k)] + 1.

Proof. It is an easy exercise by transfinite induction.

3.2 Lavrentiev index
In this section, K will denote a compact metric space and A,B will be two disjoint
Gδ subset of K. For more details and motivation on Lavrentiev index we refer the
reader the article [M25].

Definition 3.8. Let K and A,B as above. We will denote by R(A,B) the family
of all strictly increasing net (Gα)α≤β (β < ω1) of open subset of K such that:

• G0 = ∅ and Gβ = K;

• Gγ =
⋃
α<γ Gα if γ is a limit ordinal;

• Gα+1 \Gα is disjoint with either A or B for all α < β.

Notice that R(A,B) is always non-empty. For example see [KK68].
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Definition 3.9. We call the Lavrentiev index on A,B the ordinal number

L(A,B) = min{β < ω1 : there is (Gα)α≤β ∈ R(A,B)}

If f is a function in B1(K) and a, b ∈ R with a < b then A = {f ≤ a} and
B = {f ≥ b} are two disjoint Gδ. Indeed, if (fn)n∈N is a sequence in C(K) pointwise
convergent to f , then we have

X \ A =
⋃
k∈N

⋃
n∈N

⋂
m≥n

{
x ∈ K : fm(x) ≥ a+

1

k

}
.

Thus X \ A is an Fσ set and therefore A is Gδ. For B the proof is analogous.
Therefore we can give the following definition.

Definition 3.10.
L(f, a, b) = L({f ≤ a}, {f ≥ b})

3.3 Bourgain Theorem on Lavrentiev index
Proposition 3.11. Let A and B be disjoint Gδ subsets of K and let (On)n be a
sequence of open sets in K so that either A ⊂

⋃
n∈NOn or B ⊂

⋃
n∈NOn. Then

L(A,B) ≤ L (A ∩O1, B ∩O1) + . . .+ L (A ∩On, B ∩On) + . . .+ 1

≤ sup
n
L (A ∩On, B ∩On) · ω0 + 1

Proof. Let βn = L (A ∩On, Bn ∩On) and let (Gn
α)α≤βn be a member of R (A ∩On) , B ∩On).

Take β = β1 + . . . + βn + . . ., which is a limit ordinal and consider the increasing
sequence (Gα)α≤β+1 of open sets in K, obtained as following:

• Gα = O1 ∩G1
α if α 6 β1;

• Gβ1+...+βn+1+α = O1 ∪ . . . ∪On ∪ (On+1 ∩Gn+1
α ) if n ∈ N and α < βn+1;

• Gβ =
⋃
n∈NOn and Gβ+1 = K.

By hypothesis Gβ+1\Gβ is either disjoint with A or with B. It is easily seen that
(Gα)α≤β+1 verifies the properties of Definition 3.8 and hence belongs to R(A,B).
Thus L(A,B) ≤ β + 1.

Proposition 3.12. Assume A and B disjoint Gδ subsets of K and (An)n and (Bn)n
be two sequences of open sets satisfying A ⊂

⋃
m

⋂
n≥mAn and B ⊂

⋃
m

⋂
n≥mBn.

Let X1, . . . , Xd be a finite family of open subsets of K and α < ω1, such that

L (A ∩X1, B ∩X1) > α1 · ω0 + 1

for all i = 1, . . . , d.
Then there exists some n ∈ N so that L (A ∩Xi ∩ εAn, B ∩Xi ∩ εAn) > α when-

ever i = 1, . . . , d and ε = ±1.



CHAPTER 3. BOURGAIN THEOREM ON LAVRENTIEV INDEX 18

Proof. Suppose that the statement is untrue, then for each n ∈ N there is some
in = 1, . . . , d and εn = ±1 such that

L (A ∩Xin ∩ εnAn, B ∩Xin ∩ εnAn) ≤ α

Clearly there is some i = 1, . . . , d and some ε = ±1 so thatN = {n ∈ N; in = i, εn = ε}
is an infinite set. Since (εAn)n∈N is an open covering of either A or B, Proposition
3.11 yields that L (A ∩Xi, B1 ∩Xi) 6 α · ω0 + 1.

This is the required contradiction.

Let us introduce the following notation. Define by transfinite induction the
ordinal [α]:

• [0] = 0;

• [β] = supα<β[α] · ω0 + 1 for all β < ω1.

Definition 3.13. Let α < ω1 be an ordinal number. We define

T (α) =
⋃
n∈N

{(α1, . . . , αm) : α > α1 > α2 > . . . > αn}

Observe that o[T (α)] = α for all ordinal numbers α < ω1

Let us denote by ω<ω0
0 the tree on N consisting of all finite increasing sequences

on N, i.e.
ω<ω0
0 =

⋃
m∈N

{(n1, . . . , nm) ∈ Nm : n1 < n2 < . . . < nm}

.

Proposition 3.14. Let A and B be two disjoint Gδ sets and (An)n∈N, (Bn)n∈N be
two sequences of open subset of K satisfying

A ⊂
⋃
m∈N

⋂
n≥m

An and B ⊂
⋃
m∈N

⋂
n≥m

Bn

Let α < ω1 be such that L(A,B) > [α]. Then there is a regular map

ρ : T (α)→ ω<ω0
0

such that

ρ(α1, . . . , αk) = (n1, . . . , nk)⇒ L(A ∩
k⋂
l=1

εlAnl , B ∩
k⋂
l=1

εlAnl) > [αk] (3.1)

for all (ε1, . . . , εk) ∈ {−1,+1}k.
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Proof. We define ρ on Tk(α) by induction on k.
Fix α1 in T1(α). Since L(A,B) > α1 · ω0 + 1, by Proposition 3.12 there is

some n1 ∈ N such that L (A ∩ ε1An1 , B ∩ ε1An1) > [a1] for ε1 = ±1. Hence, take
ρ (α1) = n1.

Assume now ρ defined on Tk(α) and fix (α1, . . . , αk, αk+1) ∈ Tk+1(α). Then
(α1, . . . , αk) ∈ Tk(α) and the induction hypothesis applies. Hence, if ρ (α1, . . . , αk) =
(n1, . . . , nk), then since [αk] ≥ [αk+1] ·ω0 +1, by Proposition 3.12 again there is some
nk+1 > nk so that

L

(
A ∩

k+1⋂
l=1

εlAnl , B ∩
k+1⋂
l=1

εlAnl

)
> [αk+1]

for (ε1, . . . , εk, εk+1) ∈ {1,−1}k+1.
We only have to take

ρ (α1, . . . , αk, αk+1) = (n1, . . . , nk, nk+1)

to complete the construction.
It is easily seen that ρ is a regular map that satisfies the required condition.

Definition 3.15. Let (An, Bn)n∈N be a sequence of pairs of subset of K. Using the
notation −An = Bn let us define for all n ∈ N the tree

T (An, Bn, n) =
⋃
k∈N

{
(n1, . . . , nk) ∈ Nk : n1 < n2 < · · · < nk and

k⋂
l=1

εlAnl 6= ∅ for all ε1, . . . , εn ∈ {±1}n
}

Define also o(An, Bn, n) = o[T (An, Bn, n)] + 1

Proposition 3.16. Let A and B be two disjoint Gδ sets and (An)n∈N, (Bn)n∈N be
two sequences of open subset of K satisfying

A ⊂
⋃
m∈N

⋂
n≥m

An and B ⊂
⋃
m∈N

⋂
n≥m

Bn

Then L(A,B) ≤ [o(An, Bn, n)].

Proof. Take α = o(An, Bn, n) and suppose L(A,B) > [α]. Consider ρ : T (α) →
ω<ω0
0 a regular map satisfyng (3.1). Since ρ(T (α)) ⊂ T (An, Bn, n), it follows that
o(An, Bn, n) ≥ o[T (α)] + 1 = α + 1, which is a contradiction.

Theorem 3.17. Let (fn)n∈N be a sequence in C(K) pointwise convergent to f and
take real numbers a < b < c < d. Then

L(f, a, b) ≤ [o({fn < c}, {fn > d}, n)]
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Proof. It follows from the fact that

{f ≤ a} ⊂
⋃
m∈N

⋂
n≥m

{fn < c} and {f ≤ b} ⊂
⋃
m∈N

⋂
n≥m

{fn > d}

and by Proposition 3.16.

Corollary 3.18. Let (fn)n∈N be a sequence in C(K) which is pointwise relatively
compact in B1(K) and let f be a cluster point of (fn)n∈N with the pointwise topology
of B1(K). Take real numbers a < b < c < d. Then

L(f, a, b) ≤ [o({fn < c}, {fn > d}, n)] < ω1

Proof. By Rosenthal Theorem 2.12 there is a subsequence (fnk)k∈N point-wise con-
vergent to f . Thus by Theorem 3.17

L(f, a, b) ≤ [o({fnk < c}, {fnk > d}, nk)] ≤ [o({fn < c}, {fn > d}, n)] < ω1

Definition 3.19. Let X be a separable Banach space. For all δ > 0 let us define

T (X, δ) =
∞⋃
n=1

{
(x1, . . . , xn) ∈ Xn : ‖x‖ ≤ 1 and

∥∥∥∥ n∑
i=1

λixi

∥∥∥∥
X

≥ δ
n∑
i=1

|λi|
}

Observe that all such T (x, δ) are closed trees of X. Moreover if `1 ⊆ X than
there is a sequence (xn)n∈N such that

δ

∥∥∥∥ n∑
i=1

λiei

∥∥∥∥
`1

= δ

n∑
i=1

|λi| ≤
∥∥∥∥ n∑
i=1

λixi

∥∥∥∥
X

≤
n∑
i=1

|λi| =
∥∥∥∥ n∑
i=1

λiei

∥∥∥∥
`1

for all n ∈ N and for all (λ1, . . . , λn) ∈ Rn, hence (x1, . . . , xn) is in T (x, δ) for all
n ∈ N, i.e. T (x, δ) is ill-founded. Similarly, if there is a δ > 0 such that T (x, δ) is ill-
founded, then his infinite branch is a sequence (xn)n∈N in X equivalent to the usual
`1 basis. Everything said before can be summarised in the following Proposition.

Proposition 3.20. T (x, δ) is well-founded if and only if X does not contain sub-
spaces isomorphic to `1.

Definition 3.21. Let X be a separable Banach space such that `1 6⊆ X and let
δ > 0. We will call the Bourgain index of X and δ,

O(X, δ) = o[T (X, δ)] + 1

Notice that O(X, δ) < ω1, since T (X, δ) is well-founded by Proposition 3.20.
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Lemma 3.22. Let x1, . . . , xn ∈ X and a, b ∈ R with a < b. For all l ∈ {1, . . . , k}
define

Al = {x∗ ∈ K : x∗(xl) < a} and Bl = {x∗ ∈ K : x∗(xl) > b}

If
⋂k
l=1 εlAl 6= ∅ for all ε1, . . . , εk ∈ {±1} (we are using the notation Bl = −Al),

then ∥∥∥∥ k∑
l=1

λixi

∥∥∥∥
X

≥ b− a
2

k∑
l=1

|λl| (3.2)

for all (λ1, . . . , λk) ∈ Rk.

Proof. Fix (λ1, . . . , λk) ∈ Rk and put{
εl = +1, δl = −1 if λl ≥ 0

εl = −1, δl = +1 if λl < 0

By assumption there exist

x∗ ∈
k⋂
l=1

εlAl and y∗ ∈
k⋂
l=1

δlAl

Therefore ∥∥∥∥ k∑
l=1

λlxl

∥∥∥∥
`1

≥
∣∣∣∣x∗( k∑

l=1

λlxl)

∣∣∣∣ ≥ −∑
λl≥0

|λl|x∗(xl) +
∑
λl<0

|λl|x∗(xl)

≥ −
∑
λl≥0

|λl|a+
∑
λl<0

|λl|b
(3.3)

Similarly, using y∗ we also have:∥∥∥∥ k∑
l=1

λlxl

∥∥∥∥
`1

≥ +
∑
λl≥0

|λl|b−
∑
λl<0

|λl|a (3.4)

Adding up (3.3) and (3.4) we obtain the thesis.

Theorem 3.23 (Bourgain). Let X be a separable Banach space which does not
contain a copy of `1. If x∗∗ ∈ X∗∗ with ‖x∗∗‖ ≤ 1, a, b ∈ R and 0 < δ < b−a

2
, then

L(x∗∗|K , a, b) ≤ [o(X, δ)] holds.

Proof. Let (xn)n∈N be a dense sequence in BX . By Theorem 2.23 (xn|K)n∈N is
relatively compact in B1(K). Let c, d ∈ R such that a < b < c < d and δ < d−c

2
.

Let us define

An = {x∗ ∈ K : x∗(xn) < c} and Bn = {x∗ ∈ K : x∗(xn) > d}



CHAPTER 3. BOURGAIN THEOREM ON LAVRENTIEV INDEX 22

Then by Lemma 3.22 the map n 7→ xn induces the regular map ρ : T (An, Bn, n) 7→
o[T (X, δ)]. Hence by Proposition 3.6

o[T (An, Bn, n)] ≤ T (X, δ)

thus
o(An, Bn, n) ≤ o(X, δ).

To conclude, by Corollary 3.18

L(x∗∗|K , a, b) ≤ [o(An, Bn, n)] ≤ [o(X, δ)]



23

Chapter 4

Bourgain example

This chapter is based on some unpublished notes by Bourgain, which continue his
work [Bou80b]. In these notes he further investigated on the topic, answering some
question posed by Rosenthal on two subclasses of first Baire functions introduced
by Bourgain.

4.1 Results on the bidual
The following Lemma is a consequence of Choquet Theorem 2.19.

Lemma 4.1. Let X be a separable Banach space, let x∗∗ ∈ B1(K) and define

i : X −→ C(K)

x 7−→ x|K (4.1)

If (fn)n∈N ⊆ C(K) is pointwise convergent to x∗∗ then (fn)n∈N, seen as a sequence
in C(K)∗∗, weakly∗ converges to i∗∗(x∗∗).

Lemma 4.2. Let A and B two subsets of a Banach space X. If Aw
∗

∩ Bw∗ 6= ∅ then
d(co(A), co(B)) = 0.

The following is a strict improvement of Odell-Rosenthal Theorem 2.23.

Theorem 4.3. Let X be a Banach space, K = (BX∗ , w
∗) and x∗∗ ∈ X∗∗. Then the

following conditions are equivalent:

1.) x∗∗ ∈ B1(K).

2.) There is a sequence (xn)n∈N ⊆ X such that x∗∗ = w∗-limxn and ‖xn‖X∗∗ ≤
‖x∗∗‖X∗∗.



CHAPTER 4. BOURGAIN EXAMPLE 24

Proof. Since X is a subset of C(K), it is trivial that 2.) implies 1.).
For the converse, suppose x∗∗ ∈ B1(K) i.e. there is (fn)n∈N ⊆ C(K) pointwise

convergent to x∗∗. Let’s define C = BX(0X , ‖x∗∗‖X∗∗) and Dm = co{fn : n ≥ m}.
By Lemma 4.1

i∗∗(x∗∗) ∈ Dn
w∗

for all n ∈ N. By Goldstine’s Theorem 1.10, i(C) is w∗-dense in B(0C(K)∗∗ , ‖x∗∗‖X∗∗),
thus

i∗∗(x∗∗) ∈ i(C)
w∗

Since Dn
w∗ ∩ i(C)

w∗

6= ∅, by Lemma 4.2 d(Dn, i(C)) = 0 for all n ∈ N, i.e. there
is a xn ∈ C such that d(i(xn),Dn) < 1

n
for all n ∈ N. The sequence (xn)n∈N built in

this way is pointwise convergent to x∗∗ and ‖xn‖X∗∗ ≤ ‖x∗∗‖X∗∗ .

Lemma 4.4. Let X be a Banach space, (xn)n∈N ⊆ X such that w∗-limxn = x∗∗ ∈
X∗∗ and d(x∗∗, X) > ε > 0. Then exists a subsequence (xnk)k∈N such that

‖a1xn1 + a2(xn2 − xn1) + . . .+ am(xnm − xnm−1)‖ ≥
ε

2
max
1≤i≤m

|ai| (4.2)

for all (a1, . . . , am) ∈ Rm.

Corollary 4.5. If the hypothesis of Lemma 4.4 holds then

‖a1xn1 + a2xn2 + . . .+ amxnm‖ ≥
ε

4
max
1≤i≤m

|ai| (4.3)

for all (a1, . . . , am) ∈ Rm.

Proof. It is sufficient to define bk = ak + . . . + am for all k ∈ {1, . . . ,m} and to
rewrite (4.2) using the n-tuple (b1, . . . , bk).

Lemma 4.6. Let E and F be two closed subspaces of a Banach space X, and
let i : E ↪→ X and j : F ↪→ X be the canonical immersions. Suppose there is an
x∗∗ ∈ X∗∗ such that x∗∗ is in B1(K) and there exist e∗∗ ∈ E∗∗, f ∗∗ ∈ F ∗∗ such that
i∗∗(e∗∗) = j∗∗(f ∗∗) = x∗∗. Then there are a closed subspace Z of E which is linear
isomorphic to a subspace of F and a sequence (zn)n∈N ⊆ Z w∗-convergent to x∗∗ in
Z∗∗ such that ‖zn‖X∗∗ ≤ ‖x∗∗‖X∗∗.

Proof. Suppose x∗∗ ∈ X∗∗ \X, otherwise the thesis is trivial. By Lemma 4.1 there
are (en)n∈N ⊆ E and (fn)n∈N ⊆ F weakly∗ convergent to x∗∗. Define

Cm = co{en : n ≥ m} and Dm = co{fn : n ≥ m}

for all m ∈ N.
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Of course x∗∗ ∈ Cm
w∗ ∩ Dm

w∗ for all m ∈ N, so by Lemma 4.2 d(Cn,Dn) = 0.
Hence there are (un)n∈N ⊆ Cn and (vn)n∈N ⊆ Dn such that

‖un − vn‖X <
ε

2n−3
(4.4)

Since d(x∗∗, X) > ε > 0, Corollary 4.5 can be applied, so there is a subsequence
(unk)k∈N such that

max
1≤i≤m

|ai| ≤
4

ε

∥∥∥∥ l∑
i=1

aiuni

∥∥∥∥ (4.5)

Let Z = span{unk : k ∈ N}. By (4.4), Z is isomorphic to span{vnk : k ∈ N}. To
conclude, it is clear that (unk)k∈N ⊆ Z weakly∗ converges to x∗∗, thus by Theorem
4.3 there is a sequence (zn)n∈N with the wanted properties.

4.2 Two sub-classes of first Baire functions
If X is a separable Banach space, let us recall that B1(X) is the set of all elements
in X∗∗ that are weak∗-limit of a sequence in X. By Theorem 4.3, we can write

B1(X) = {x∗∗ ∈ X∗∗ : ∃(xn)n∈N ⊆ X s.t. ‖xn‖X∗∗ ≤ ‖x∗∗‖X∗∗ , w∗- limxn = x∗∗}

Now, let us define two subsets of B1(X).

Definition 4.7.

B0
1(X) = {x∗∗ ∈ X∗∗ : there exists (xn)n∈N ⊆ X such that ‖xn‖X∗∗ ≤ ‖x∗∗‖X∗∗ ,

x∗∗ = w∗- limxn and span{xn : n ∈ N} has separable dual};

B1
1(X) = {x∗∗ ∈ X∗∗ : there exists (xn)n∈N ⊆ X such that ‖xn‖X∗∗ ≤ ‖x∗∗‖X∗∗ ,

x∗∗ = w∗- limxn and `1 6↪→ span{xn : n ∈ N}}.

Theorem 4.8. If X is a Banach space and `1 ↪→ X then X∗ is not separable.

Corollary 4.9. If X is a separable Banach space then B0
1(X) ⊆ B1

1(X).

Thus the following chain of inclusions holds:

X ⊆ B0
1(X) ⊆ B1

1(X) ⊆ B1(X) ⊆ X∗∗.

Remark that by Theorem 2.24, if X contains no isomorphic copies of `1, then
B1
1(X) = B1(X) = X∗∗. Moreover, by Remark 1.6, `1 = B0

1(`1) = B1
1(`1) = B1(`1).

Thus the following question arises:
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Question 4.10. Does the equality B1(X) = B1
1(X) hold for every separable Banach

space?

Proposition 4.11. Let X be a separable Banach space, let x∗∗ ∈ X∗∗. Then

I) If there is (fn)n∈N ⊆ C(K) pointwise convergent to x∗∗ and such that
span{fn : n ∈ N} has not separable dual, then x∗∗ ∈ B0

1(K);

II) If there is (fn)n∈N ⊆ C(K) pointwise convergent to x∗∗ and such that
span{fn : n ∈ N} does not contain `1, then x∗∗ ∈ B1

1(K).

Proof. Let Y = span{fn : n ∈ N}, let i : X → C(K) and j : Y → C(K) be the
immersions as in (4.1). By Lemma 4.1 (fn)n∈N ⊆ C(K)∗∗ is weakly∗ convergent to
i∗∗(x∗∗), so by Theorem 4.3 i∗∗(x∗∗) ∈ B1(K). On the other hand i∗∗(x∗∗) ∈ j∗∗(Y ∗∗).
Hence by Lemma 4.6 there is a closed subspace Z of X linear isomorphic to a
subspace of Y and a sequence (zn)n∈N ⊆ Z w∗-convergent to x∗∗ in Z∗∗ such that
‖zn‖X∗∗ ≤ ‖x∗∗‖X∗∗ .

Therefore if I) holds, then Z∗ is separable, thus x∗∗ ∈ B0
1(K).

If II) holds, then `1 6↪→ Z, thus x∗∗ ∈ B0
1(K).

4.3 Bourgain example
We will now give an example of X for which X ( B1

1(X) ( B1(X) and also X (
B1
0(X) ( B1(X)
First we need this Proposition, whose proof is omitted.

Proposition 4.12. Let K be a compact metric space and (fn)n∈N in C(K) point-
wise stabilized. Then span{fn : n ∈ N} has separable dual.

Proposition 4.13. Let K be a compact metric space. Then each function f in
B1(K) can be uniformly approximated by a sequence (fn)n∈N of continuous pointwise
stabilized functions.

Proof. f ∈ B1(K), hence there is a sequence (fn)n∈N of continuous function point-
wise convergent to f . Let us define

An =
⋂
p,q≥n

{s ∈ K : |fp(s)− fq(s)| < ε} and Bn = X \ An

Thus An is Gδ. It is not difficult to define a Baire-1 function ϕn such that

An = {s ∈ K : ϕn(s) = 0} and Bn = {s ∈ K : ϕn(s) > 0}

Now take for each k ∈ N
ψk,n = min{kϕn, 1}
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Notice that (ψk,n)k∈N point-wise converge to 1Bn and it is point-wise stabilized.
To conclude define g1 = f1 and for each k ≥ 2

gk = f1 + (f2 − f1)ψ1,k + . . .+ (fk − fk−1)ψk−1,n

Thus (gk)k∈N is a sequence of continuous functions point-wise stabilized such that

‖f − g‖∞ < ε

Let 2ω be the Cantor set and let (Kr,s)r∈N,1≤s≤2r the system of Cantor intervals,
i.e.

2ω =
⋂
r∈N

⋃
1≤s≤2r

Kr,s.

For each r ∈ N, if f is a real function defined on Kr,1 and s ∈ {1, . . . 2r}, we will
denote with f the periodic extension of f to 2ω, i.e. the real function defined on⋃

1≤s≤2r Kr,s such that

f(t) = f

(
t− s− 1

2r

)
if t ∈ Kr,s

Lemma 4.14. Consider the sequence (εr)r∈N with εr = 1/5r, then for all r ∈ N
we can define inductively Ar and Br two disjoint Gδ subsets of Kr,1, a function
ϕr ∈ B1(Kr,1), a sequence (fr,n)n∈N in C(Kr,1) and a subspace Xr of C(K) such
that:

• ϕr(t) = 1 for all t ∈ Ar and ϕr(t) = −1 for all t ∈ Br and ‖ϕr‖∞ = 1;

• (fr,n)n∈N is a point-wise stabilized sequence with weak∗ limit ϕr;

• ‖fr,n‖∞ ≤ 1 for all n ∈ N;

• Xr := span{
∑r

s=1 εsf s,n : n ∈ N}

• L(Ar, Br) >
[
O
(
Xr−1,

εr
8

)]
The construction is possible by the following facts:

a. Two disjoint Gδ can be separated by a Baire-1 function, which by Proposition
4.13 is the limit of a stabilizing sequence of continuous functions;

b. Since also the sequences (f r,n, n)n∈N stabilize, by Proposition 4.12, X∗r are
separable. Hence `1 does not embed in Xr and O (Xr, δ) < ω1 for all δ > 0 by
Definition of Bourgain index 3.21.
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Theorem 4.15. For X = C(2ω), both B0
1(X) and B1

1(X) are not vector spaces, and
then they cannot be equal to B1(X).

Proof. Let us consider δr = 2−r for each r ∈ N and take ψr ∈ B1(K), given by

ψr(t) =

{
ϕr(t) if t ∈ Kr,2r−1

ψr(t) = 0 otherwise

Let us define Φ =
∑

r εrϕr and Ψ =
∑

r δrψr, which are in B1(K).
Claim:

• Ψ ∈ B0
1(X) and Φ + Ψ ∈ B0

1(X)

• Φ /∈ B1
1(X)

Let for all r, n ∈ N the function gr,n in C(K) be given by

gr,n(t) =

{
f r,n(t) if t ∈ Kr,2r−1

0 otherwise

Consider the sequence of function (gn)n∈N in X, where gn =
∑

r δrgr, n. Such
sequence is bounded by 1 and pointwise stabilizing with limit Ψ. Therefore by
Proposition 4.12 Γ = span{gn : n ∈ N} has separable dual. Thus Ψ ∈ B0

1(X).
On the other hand Φ is the pointwise limit of the sequence (fn)n∈N in X, where

fn =
∑

r εrf r, n for each n ∈ N. Thus Φ + Ψ is the point-wise limit of the sequence
(fn + gn)n∈N. We will show that Λ = span{fn + gn : n ∈ N} and Γ are isomorphic
and therefore that Φ + Ψ ∈ B0

1(X).
If (an)n is a finite sequence of scalars, then∥∥∥∥∥∑

n

anfn‖ ≤
∑
r

εr

∥∥∥∥∥∑
n

anf r,n

∥∥∥∥∥=
∑
r

εr

∥∥∥∥∥∑
n

anfr,n‖ =
∑
r

εr

∥∥∥∥∥∑
n

anεr,n

∥∥∥∥∥
≤ 4

5

∑
r

δr

∥∥∥∥∥∑
n

anδrεr,n

∥∥∥∥∥ ≤ 4

5

∑
r

δr ‖nangn‖ =
4

5

∥∥∥∥∥∑
n

angn

∥∥∥∥∥
and hence

1

5

∥∥∥∥∥∑
n

angn

∥∥∥∥∥ 6

∥∥∥∥∥∑
n

an (fn + gn)

∥∥∥∥∥ 6
9

5

∥∥∥∥∥∑
n

angn

∥∥∥∥∥
Thus Γ and Λ are isomorphic.

For the second part of the Claim we will show that if (hm)m∈N is a uniformly
bounded sequence in C(K) with pointwise limit Φ, then `1 embeds in Y = span{hm :
m ∈ N}. By the proof of Lemma 4.6 that we may assume hm ∈ co{fn : n ≥ m} for
each m ∈ N. Thus for all r ∈ N we obtain a sequence (hr,m)m in C (Kr,1) such that
for each m ∈ N:
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(i) hr,m are the same convex combinations of the fr,n(n ≥ m)

(ii) hm =
∑

r εrhr,m

We will prove that for each r ∈ N, there exists some y in Y such that ‖y‖ ≤ 3
2

and
inf y (Kr,s) < −

1

8
and sup y (Kr, s) >

1

8
for all s = 1, . . . , 2r (4.6)

Thus Z = {z ∈ Y : ‖z‖ ≤ 3
2
} in not relatively compact in B1(X) with the point-

wise topology, thus there is (zn)n∈N ∈ Z with no weak Cauchy subsequences and by
Theorem 2.24 `1 embeds in Y . Thus part two of the Claim will be completed.

Let us fix r ∈ N. Since limm hr,m = limn fr,n = ϕr point-wise on Kr,1, it follows
from Theorem 3.17 that

L (Ar, Br) ≤ L (ϕr,−1, 1) ≤ [O (Cm, Dm,m)]

where
Cm =

{
t ∈ Kr,1;hr,m(t) < −1

2

}
and Dm =

{
t ∈ Kr,1;hr,m(t) > 1

2

}
.

Therefore
O
(
Xr−1,

εr
8

)
< O (Cm, Dm,m) (4.7)

.
By (i), if we define xm =

∑r−1
s=1 εshs,m then (xm)m∈N is in BXr−1 .

Let us introduce the tree

T =
∞⋃
k=1

{
(m1, . . . ,mk) ∈ Nk : m1 < . . . < mk and (xm1 , . . . , xmk) ∈ T

(
xr−1,

εr
8

)}
The mappingm 7→ xm induces a regular map from T into T

(
Xr−1,

ε
8

)
. Therefore

by (4.7) and by Proposition 3.6

o[T ] ≤ o
[
T
(
Xr−1,

εr
8

)]
< o[T (Cm, Dm,m)]

Hence there are integers m1 < . . . < mk such that (m1, . . . ,mk) ∈ T (Cm, Dm,m)

and
∥∥∥∑k

l=1 λlxml

∥∥∥ < εr
8
for some (λ1, . . . , λk) in Rk with

∑
l∈N |λl| = 1.

Consider (ν1, . . . , νk) in {1,−1}k so that
∑

l νlλl = 1. Since (m1, . . . ,mk) ∈
T (Cm, Dm;m) then

k⋂
l=1

νlCml 6= ∅ and
k⋂
l=1

νlDml 6= ∅

(with the usual notation νCm = Cm if ν = 1 and νCm = Dm if ν = −1).
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Hence, if u =
∑

l λlhr,ml , then

inf u (Kr,1) < −
1

2
and supu (Kr,l) >

1

2

and therefore
inf u (Kr,s) < −

1

2
and supu (Kr,s) >

1

2

for all s = 1, . . . , 2r.
Now observe that

y = ε−1r
∑
l

λlhml = ε−1r
∑
l

λlxml + u+ ε−1r
∑
l

λl
∑
s>r

εshs,ml

and thus ‖y − u‖ 6 ε−1r
(
εr
8

+
∑

s>r εs
)

= 3
8
. Since ‖u‖ ≤ 1, the element y of Y is

such that ‖y‖ ≤ 3
8
and satisfies (4.6).
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Chapter 5

Chapter Four Title

5.1 Descriptive set Theory
Descriptive set Theory is the study of subsets of Polish spaces, which are classified
inside hierarchies, according to the complexity of their definition and structure.

In the beginning we have the Borel sets of a topological space (X, τ), i.e. the
σ-algebra generated by the open sets of X. Their class is denoted by B(X).

If X is Polish, this class can be further analyzed in a transfinite hierarchy of
length ω1 ( the first uncountable ordinal), the Borel hierarchy. These classes are
denoted by Σ0

ξ ,Π
0
ξ , for 1 ≤ ξ < ω1, where

Σ0
1 = open, Π0

1 = closed;

Σ0
ξ =

{⋃
n∈N

An : An is in Π0
ξn for ξn < ξ

}
;

Π0
ξ = the complements of Σ0

ξ sets.

(Therefore, Σ0
2 = Fσ,Π

0
2 = Gδ,Σ

0
3 = Gδσ,Π

0
3 = Fσδ, etc.). We have that:

B(X) =
⋃
ξ<ω1

Σ0
ξ =

⋃
ξ<ω1

Π0
ξ .

Beyond the Borel sets one has next the projective sets, which are those ob-
tained from the Borel sets by the operations of continuous image and complemen-
tation. The class of projective sets ramifies in an infinite hierarchy of length ω (the
first infinite ordinal), the projective hierarchy, denoted by P. We denote by

Σ1
1 = analytic, Π1

1 = co-analytic;
Σ1
n+1 = all continuous images of Π1

n sets;
Π1
n+1 = the complements of Σ1

n+1 sets;
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and
P =

⋃
n∈N

Σ1
n =

⋃
n∈N

Π1
n

We will now show some important and well known facts in Descriptive Set The-
ory. We refer the reader the book [Kec95] for the proofs and the details of this
section.

Definition 5.1. Let X, Y be two topological spaces. A function f : X → Y is called
Borel if f−1(B) is in B(X) for all B ∈ B(Y ).

Definition 5.2. A subset A of a Polish space X is said to be

• analytic if it is the continuous image of a Borel set in a Polish space Y .

• coanalytic if X \ A is analytic.

We denote by Σ1
1(X) the family of all analytic subsets of X and by Π1

1(X) the
family of all coanalytic subsets.

The following result is known as the Lusin separation Theorem.

Theorem 5.3 (Lusin). Let X be a Polish space and let A,B be two disjoint analytic
subset of X. Then there exists C ∈ B(X) such that

1. A ⊆ C

2. B ∩ C = ∅

Theorem 5.4 (Souslin). If X is a Polish space then

B(X) = Σ1
1(X) ∩ Π1

1(X)

Proof. (⊆) Is trivial.
(⊇) Take A ∈ Σ1

1(X) ∩Π1
1(X), then we can apply Theorem 5.3 to A,Ac, thus there

exists C ∈ B(X) such that A ⊆ C and B ∩ C = ∅, therefore A = B.

Theorem 5.5. If F is subspace of the Polish space X, then F endowed with the
relative topology is Polish if and only if F is a Gδ subspace of X.

Let X be a topological space. In this chapter we denote by F(X) the set of all
his closed subsets and by K(X) the set of all his compact subsets.

It is common to endow K(X) with the Vietoris topology, i.e. the topology
generated by the sets

{V(U0, . . . , Un) : n ∈ N, Ui open subsets of Y }.
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where

V(U0, . . . , Un) = {K ∈ K(X) : K ⊆ U0 and K ∩ Ui 6= ∅ for all i ∈ {1, . . . , n}}

If X is a metric space, it is also possible to define the Hausdorff Metric δH on
K(X) by

δH(H,L) = max{max
x∈K

dX(x, L),max
y∈L

d(K, y)}

for all K,L ∈ K(X).

Remark 5.6. The topology induced by the Hausdorff metric is exactly the Vietoris
topology.

Remark 5.7. • If X is a separable space, so is K(X).

• If (X, d) is a complete metric space, so is (K(X), δH).

• Thus if X is a Polish space, so is K(X).

Proposition 5.8. If (X, d) is compact metric space, then the Borel sets of K(X)
are generated by

{{K ∈ K(X) : K ∩ U 6= ∅} : U open subset of X}

Definition 5.9. A measure space (X,S), where S is a σ-algebra of subsets of X, is
called standard Borel if there is a Polish topology on this set whose Borel σ-algebra
coincides with S.

Remark 5.10. Let X be a Polish space. We can construct a compactification of X
in the following way:
We take (xn)n∈N a dense sequence in X and we define the injective function

i : X → [0, 1]ω

x 7→ (d(x, xn))n∈ω

Then Y = i(X) is a metric compactification of X.

Theorem 5.11. Let X be a Polish space. Then the σ-algebra on F(X) generated
by

{{C ∈ F(X) : F ∩ U 6= ∅} : U open subset of X}

is Standard Borel.
The space F(X) with this σ-algebra is called the Effros Borel space.
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Proof. Let X be a metric compactification of X. Since X is a Polish subspace of
the Polish space Y , by Theorem 5.5 X is a Gδ subset of Y . Thus X =

⋂
n∈N Un

where Un is an open set of Y for all n ∈ N. Let

Z = {F Y
: F ∈ F(X)} ⊆ K(Y )

and define

Φ: F(X)→ K(X)

F 7→ F
Y

If F1
Y

= F2
Y then F1 = X ∩ F1

Y
= X ∩ F2

Y
= F2 thus Φ is injective.

Claim Z is a Gδ and therefore a Polish space by Remark 5.7.
Indeed K ∈ Z ⇐⇒ K ∩X = K ∩ (

⋂
n∈N Un) is dense in K ⇐⇒ K ∩ Un is dense

in K for all n ∈ N by the Baire Category Theorem 2.4. Let (Vm)m∈N be a basis for
Y , then
K ∩ Un is dense in K for all n ∈ N ⇐⇒ (K ∩ Vm 6= ∅ =⇒ K ∩ (Vm ∩ Um) 6= ∅)
for all n,m ∈ N. Therefore

Z =
⋂

n,m,l∈N

(
V(B(V c

m, 1/l)) ∪ V(Y, Un ∩ Vm)

)
.

Now we ca transfer back the relative topology on Z via Φ, to get a Polish topology
on F(X). We need to verify that the Borel σ-algebra generated by this topology on
F(X) is the Effros-Borel one. Indeed by Proposition 5.8 B(K(Y )) is generated by

{{K ∈ K(Y ) : K ∩ U 6= ∅} : U open subset of Y }

thus B(F(X)) is generated by

{Φ−1({K ∈ K(Y ) : K ∩ U 6= ∅}) : U open subset of Y }

= {{F ∈ F(X) : F
Y ∩ U 6= ∅} : U open subset of Y }

= {{F ∈ F(X) : (F ∩X) ∩ U 6= ∅} : U open subset of Y }
= {{F ∈ F(X) : F ∩ V 6= ∅} : V open subset of X}

The following is an important Selection Theorem by Kuratowski and Ryll-Nardzewski,
whose proof can be found in [Kec95].

Theorem 5.12. If X is a Polish space, then there is a sequence of Borel functions
dn : F(X) → X, such that for every non-empty F ∈ F(X) (dn(F ))n∈N is dense in
F .
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Lemma 5.13. If (X, d) is a compact metric space, then X is homeomorphic to a
closed subset of [0, 1]ω.

Proof. We may and do assume that the metric on X is bounded by 1. Since X
is a compact metric space, there exists a countable dense subset {xn : n ∈ N}. We
define F : X → [0, 1]ω by setting

F (x) := (d (x, x1) , d (x, x2) , . . . , d (x, xn) , . . .)

The coordinate functions πn ◦ F : X → [0, 1] are continuous therefore the function
F is continuous. We claim that F is one-one. Suppose that x, y ∈ X are such that
F (x) = F (y). Since {xn} is dense in X, there exists a sequence (xnk) such that
xnk → x as k →∞. Hence d (xnk , x)→ 0 as k →∞. Since F (x) = F (y), it follows
that d (x, xn) = d (y, xn) for all n. In particular, d (y, xnk) = d (x, xnk) → 0. Since
the limit of a sequence in a metric space is unique, we deduce that x = y. This
establishes our claim.

Since X is compact and [0, 1]ω is Hausdorff, it follows that F : X → F (X) is a
homeomorphism.

Theorem 5.14. Every compact metric space is a continuous image of the Cantor
set.

Proof. By Lemma 5.13 we can assume that the given compact metric space X is a
subset of [0, 1]ω.

Consider the map g : 2ω → [0, 1] given by g(x) =
∑

k xk/2
k+1; g is continuous

and surjective, thus the unit interval [0, 1] is the continuous image of the Cantor set.
The map g induces

g : (2ω)ω → [0, 1]ω

(xn)n∈N 7→ (g(xn))n∈N

which is continuous and surjective. Since 2ω and (2ω)ω are isomorphic, we then have
a continuous function F from the Cantor set 2ω onto [0, 1]ω. Then F−1(X) is a
closed subset of 2ω and it is mapped by F onto X.

To conclude, notice that every closed subset of the Cantor set is a retract, and
therefore it is the continuous image of the Cantor set.

Theorem 5.15. Every separable Banach space is isometrically isomorphic to a sub-
space of C(2ω).

Proof. By hypothesis, (BX∗ , w
∗) is a compact and complete metric space. Thus by

Theorem 5.14 there is a continuous and surjective function f : 2ω → (BX∗ , w
∗).

Define T : X → C(2ω) such that

T (x)(σ) = f(σ)(x) for all σ ∈ C(2ω), x ∈ X

T is linear, and by surjectivity of f , it is easy to see that T is an isometric isomor-
phism.
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Remark 5.16. By previous Theorem, we can identify the class SB of all separable
Banach space as a subset of F(C(2ω)). If we endow F(C(2ω)) with the Effros Borel
structure, then SB is a Borel subspace.

Indeed F ∈ F(C(2ω)) is a vectorial subspace if and only if

∀n,m ∈ N, ∀p, q ∈ Q [pdn(F ) + qdm(F )] ∈ F

where (dn) is a sequence as in 5.12.

The following is a fundamental theorem, whose proof can be found in [[Kec95],
Theorem 27.1].

Theorem 5.17. The set IF is Σ1
1-complete.

5.2 On certain classes of first Baire functions and
geometry of Banach spaces

In this chapter is presented the original work [MP22], by the author and his super-
visor. The article’s aim is to study the two spaces B0

1(X) and B1
1(X) introduced

by Bourgain, from the descriptive set theory point of view. It is shown that a
quantitative version of Bourgain’s theorem holds; namely, the family

{X ∈ SB : B1
1(X) $ B1(X)}

is not Borel in the family of all separable Banach spaces.
For more detail on the proofs of this section, we refer the author to the article

[MP22].

Proposition 5.18. Let X be a separable Banach space, Y be a closed subspace of
X and i : Y −→ X be the natural embedding. If y∗∗ ∈ B1(Y ), then

y∗∗ ∈ B1
1(Y ) if and only if i∗∗(y∗∗) ∈ B1

1(X).

5.2.1 An auxiliary space

Let us denote by (un)n the standard Schauder basis of C(2ω) and by cu > 0 its
basis constant. We denote by c00(T ) the space of finitely supported function from
T = ω<ω to R and by χs : T −→ {0, 1} the characteristic function of {s} for every
s ∈ T . Thus c00(T ) = span{χs : s ∈ T}.

An admissible choice of intervals is a finite set {Ij : 0 ≤ j ≤ k} of intervals of
T such that every branch of T meets at most one of these intervals.
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We define the following norm on c00(T ):

‖y‖2 = sup

 k∑
j=0

∥∥∥∥∥∥
∑
s∈Ij

y(s) u|s|

∥∥∥∥∥∥
2

C(2ω)


1
2

where the supremum is taken over k ∈ ω and over all admissible choice of intervals
{Ij : 0 ≤ j ≤ k}.

We let U2(T ) to be the completion of c00(T ) under the norm ‖ · ‖2. In the
sequel, for A ⊆ ω<ω, we denote by U2(A) the closed subspace of U2(T ) generated by
{χs : s ∈ A}.

Lemma 5.19. Let b be a branch of T . Then

(i) The space U2(b) is isomorphic to C(2ω).

(ii) If θ ∈ T and if b is a branch of θ, then U2(b) is complemented in U2(θ).

Lemma 5.20. Let (Ai)i∈ω be a sequence of subsets of T such that every branch
meets at most one of these subsets. Then the spaces

U2(
⋃
i∈ω

Ai) and (
⊕
i∈ω

U2(Ai))`2 are isometric

The following is a key result.

Theorem 5.21. Let θ ∈ T .

(i) If θ is ill founded, then B1
1(U2(θ)) $ B1(U2(θ));

(ii) If θ is well founded, then B1
1(U2(θ)) = B1(U2(θ));.

Proof. (i) If θ is ill founded, we pick b a branch of θ. By Lemma 5.19, U2(θ) contain
a complemented copy of U(b) ' C(2ω). By Theorem 4.15 and Proposition 5.18, it
follows that B1

1(U2(θ)) $ B1(U2(θ)).
(ii) For θ ∈ T , s ∈ T and i ∈ ω, we define

s_θ = {s_t : t ∈ θ}.

Since Ur(θ) = Ur(∅_θ), to prove the theorem it is enough to show the following
Claim If θ is well founded, then for any s ∈ T , U2(s

_θ) is reflexive.
We will show the Claim using transfinite induction on o(θ).
We assume that for every tree τ ∈ T such that o(τ) < α < ω1, U2(s

_τ) is
reflexive for any s ∈ T .
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Let θ ∈ T such that o(θ) = α, and for s ∈ T let Ns = {i ∈ ω : s_(i) ∈ θ}. We
let Ai = s_(i)_θi for i ∈ Ns, so that ∪i∈NsAi = s_(θ \ {s}) and every branch of T
meets at most one of the Ai’s. If i ∈ Ns, by Proposition 3.7 we get o(θi) < α, thus
U2(Ai) is reflexive by the induction hypothesis. By Lemma 5.20, we have

U2(s
_(θ \ {s})) = U2(

⋃
i∈Ns

Ai) = (
⊕
i∈Ns

U2(Ai))`2 ,

and thus U2(s
_(θ \ {s})) is reflexive.

Since {χsj : j ∈ ω, sj ∈ s_θ} is a basis of U2(s
_θ) with the first element χs

and the other element generate U2(s
_(θ \ {s})). Then, we have that U2(s

_θ) ∼=
R×U2(s

_(θ \ {s})). Therefore U2(s
_θ) is reflexive. Since reflexive, it easily follows

B1
1(U2(θ)) = B1(U2(θ)) (which are both equal to U2(θ)!)

Similarly, one gets

Theorem 5.22. Let θ ∈ T .

(i) If θ is ill founded, then U2(θ) $ B0
1(U2(θ)) $ B1(U2(θ));

(ii) If θ is well founded, then U2(θ) = B0
1(U2(θ)) = B1(U2(θ));.

5.2.2 Main results

Lemma 5.23. The map ϕ : T −→ SE defined by

ϕ(θ) = U2(θ)

is Borel.

Definition 5.24. A subset A of a Polish spaceX is said to be Σ1
1-hard or complete

analytic if for every Polish space Y , any B ⊆ Y analytic can be written as B =
f−1(A) for some Borel map f : Y → X.

Notice that, since there are analytic sets that are not Borel, it follows that Σ1
1-

hard sets are not Borel.
We can now prove the main result of the article [MP22].

Theorem 5.25. The family of all separable Banach spaces X such that B1
1(X) $

B1(X) is Σ1
1-hard. In particular, it cannot be Borel in SB.

Similarly {X ∈ SB : B1
0(X) $ B1(X)} is Σ1

1-hard.

Proof. Let us denote by F such a family. If F was Borel, then IF ⊆ ϕ−1(F),
and the inclusion has to be strict. Indeed, IF is Σ1

1-complete (5.17) and thus it
cannot be Borel, while ϕ−1(F) is Borel by assumption. Therefore, there must exists
θ ∈ WF such that ϕ(θ) ∈ F . This is in contrast with Theorem 5.21(ii).

For the second part, just use Theorem 5.22 instead.
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We now place the two classes inside the Projective hierarchy.

Theorem 5.26. The family of all separable Banach spaces X such that

B1
1(X) $ B1(X)

is Σ1
3.

Proof. Let us denote by F such a family. In [Bos94] it has been proved that

C`1 = {X ∈ SB : `1 is isomorphic to a subspace of X}

is analytic. Observe that a sequence (xn)n ⊆ X ⊆ C(BX∗) w∗-converges to some
x∗∗ ∈ X∗∗ \ X if it is weak-Cauchy. Moreover, a sequence (xn)n is weakly Cauchy
if and only if given increasing sequence (kn) and (jn) of positive integers, then the
sequence (xkn − xjn)n is weakly null.

Claim W(X) = {(xn)n ⊆ Xω weakly cauchy} is coanalytic.
Denote with [ω] the set consisting of all increasing sequences of natural number. In
[Bra14, Theorem 20] it has been proved that N (X) = {(xn)n ⊆ Xω weakly null} is
coanalytic, hence

A = {((xn)n, (sn)n, (tn)n) ⊆ Xω × [ω]ω × [ω]ω : (xsn − xtn)n ∈ N (X)}

is coanalytic. thus

W(X) = {(xn)n ⊆ Xω : ((xn)n, (sn)n, (tn)n) ∈ A ∀(sn)n, (tn)n ∈ [ω]ω}

stays coanalytic.
Note that for a space X ∈ SB the equality B1(X) = B1

1(X) holds if for every
(xn)n ⊆ X which weak∗ converges to some x∗∗ ∈ X∗∗ exists a sequence (yn)n ⊆ X
which weak∗ converges to the same x∗∗ ∈ X∗∗ such that span{yn : n ∈ ω} does not
contain a copy of `1. Since the map GX : Xω −→ SB, (xn)n 7−→ span{xn : n ∈ ω}
is Borel,

B = {(X, (xn)n, (yn)n) ⊆ SB ×Xω ×Xω : (xn)n, (yn)n ⊆ X, (xn)n, (yn)n ∈ W(X),

w∗ − lim(xn)n = w∗ − lim(yn)n, (yn)n ∈ [G−1X (C`1)]
C}

is coanalytic, thus

C = {(X, xn)n : ∃(yn)n ∈ Xω such that(X, (xn)n, (yn)n) ∈ B}

is Σ1
2, hence

G = {X ∈ SB : (X, (xn)n) ∈ C ∀(xn)n ∈ Xω}
is Π1

3.
Observe that G = {X ∈ SB : B1

1(X) = B1(X)} consequently F = GC is Σ1
3.
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Similarly we get

Theorem 5.27. The family of all separable Banach spaces X such that

B1
0(X) $ B1(X)

is Σ1
3.
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