PHYSICS

Academic Year 2023/2024 - Teacher: MARCO RUGGIERI

Expected Learning Outcomes

The aim of this course is to provide students with a fundamental understanding of classical physics, specifically mechanics, thermodynamics, and electromagnetism. Wherever possible, aspects of modern physics will be discussed, including special relativity and quantum mechanics. By the end of the course, students will have acquired knowledge of the basic principles of the scientific method and classical physics, and will be able to formulate and/or solve a physics problem.

The course includes 48 hours of in-person classes, divided into 24 hours of theory and 24 hours of practical exercises. In particular, the practical exercises will involve both numerical exercises carried out in class and formal developments (e.g., proofs of results stated in the theoretical part).

In detail, the expected learning outcomes, categorized according to the Dublin descriptors, are as follows.

1. Knowledge and understanding

   - Understand the fundamental principles of physics, including concepts such as mechanics, electromagnetism, and thermodynamics.

   - Identify and explain the physical laws that govern the behavior of matter and energy in the universe.

   - Demonstrate a solid understanding of the mathematical and theoretical concepts underlying physics.

2. Application of knowledge and understanding

   - Apply physics principles to solve practical problems in various contexts, such as the motion of objects, analysis of electrical circuits, etc.

   - Interpret experimental data and apply physical laws to analyze the results.

   - Develop physical models to describe and understand complex phenomena.

3. Ability to draw conclusions

   - Perform critical analysis of experimental data and draw conclusions based on scientific evidence.

   - Identify and solve complex physical problems using critical thinking and logic.

   - Critically evaluate existing physical theories and recognize their limitations.

4. Communication skills

   - Communicate the results of physical analyses clearly and concisely, both in written and verbal form.

   - Effectively present complex physical concepts to a non-expert audience.

   - Collaborate with others and actively participate in scientific discussions.

5. Ability to learn

   - Demonstrate the ability to learn independently, deepening knowledge of physics beyond the basic level.

   - Adapt and apply acquired knowledge and skills to new contexts and problems.

   - Continue to explore and embrace new developments and discoveries in physics even after completing the course.

Course Structure

The course will be conducted through traditional classroom lectures.

Required Prerequisites

To successfully follow the course, students should already have a solid understanding of mathematical analysis, particularly derivatives and integrals, as well as first and second-order ordinary differential equations. These topics will, however, be briefly reviewed at the beginning of the course or wherever they are needed to support the concepts taught in class. While a good knowledge of vector algebra is preferable, vector operations will be discussed at the beginning of the course.

Attendance of Lessons

Attendance is mandatory.

Detailed Course Content

Physics and the Scientific Method: The Scientific Method, Physics, Branches of Modern Physics, Systems of Measurement Units

Kinematics of Point Particles: Vectors and Matrices, Vector Operations, Motion Equations of a Point Particle, Average and Instantaneous Velocity, Acceleration, Planar Motion

Dynamics of Point Particles: Principle of Relativity, Forces, Inertial Systems, Principle of Inertia, Force and Acceleration, Inertial Mass, Impulse and Momentum, Angular Momentum and Torque, Work and Kinetic Energy, Conservative Fields and Potential Energy, Conservation of Mechanical Energy, Examples of Forces, Solutions to the Equation of Motion

Elements of System Dynamics: Fundamental Laws and Third Law of Dynamics, Center of Mass, Equations of Motion, Systems of Forces, Equilibrium of Rigid Bodies, Moment of Inertia, Kinetic Energy, and Angular Momentum of a Rigid Body, Rolling Motion

Elements of Fluid Mechanics: Mechanical Actions on Fluids, Statics of Fluids, Hydrostatics in a Gravitational Field, Hydrodynamics, Surface Tension

First Law of Thermodynamics: Heat and Temperature, Ideal Gases and Transformations, Absolute Temperature Scale, First Law of Thermodynamics and Applications to Ideal Gases. Second Law of Thermodynamics: Statements of the Second Law, Carnot Cycle, Entropy and the Second Law, Entropy of an Ideal Gas and a Solid Body, Microscopic Interpretation of Thermodynamic Quantities

Elements of Electromagnetism: Electric Charge, Coulomb's Law, Electric Field, Electrostatic Potential, Electric Dipole, Electrostatic Energy, Steady Currents, Magnetic Field, Magnetic Energy, Brief Introduction to Electromagnetic Induction, Maxwell's Equations

Textbook Information

Testi principali

1. R. A. Serway e J. W. Jewett, Fondamenti di Fisica, Edises; 6° edizione (10 giugno 2022)

2. G. Vannini e W. E. Gettys, Gettys Fisica 1, McGraw-Hill Education 5a edizione (22 Gennaio 2015)

3. G. Cantatore, L. Vitale e W. E. Gettys, Gettys Fisica 2, McGraw-Hill Education 4a edizione (15 Gennaio 2016)

Fonti aggiuntive

C. Mencuccini e V. Silvestrini, Fisica: Meccanica e Termodinamica, Casa Editrice Ambrosiana (26 Settembre 2016)

C. Mencuccini e V. Silvestrini, Fisica: Elettromagnetismo e Ottica, Casa Editrice Ambrosiana, 2° edizione (16 Gennaio 2017)

D. Sette, A. Alippi e A. Bettucci, Lezioni di Fisica 1, Zanichelli 2° edizione (19 Luglio 2021)

E. Fermi, Termodinamica, Bollati Boringhieri (1 Novembre 1977)


AuthorTitlePublisherYearISBN
G. Vannini e W. E. GettysGettys Fisica 1McGraw-Hill Education 5a edizione (22 Gennaio 2015)978-8838668838
G. Cantatore, L. Vitale e W. E. GettysGettys Fisica 2McGraw-Hill Education 4a edizione (15 Gennaio 2016)978-8838669132
R. A. Serway e J. W. JewettFondamenti di FisicaEdises6a edizione (10 Giugno 2022)978-8836230730

Course Planning

 SubjectsText References
1Introduzione alla fisica, metodo scientifico, dimensioni, algebra vettoriale (4 ore, di cui 2 di esercitazioni)testi 1 e 2
2Cinematica del punto materiale (4 ore, di cui 2 di esercitazioni)testi 1 e 2
3Dinamica del punto materiale  (6 ore, di cui 4 di esercitazioni)testi 1 e 2
4Lavoro ed energia (4 ore, di cui 2 di esercitazioni)testi 1 e 2
5Elementi di meccanica dei sistemi (4 ore, di cui 2 di esercitazioni)testi 1 e 2
6Cinematica e dinamica delle oscillazioni (2 ore, di cui 2 di esercitazioni)testi 1 e 2
7Elementi di meccanica dei fluidi (4 ore, di cui 2 di esercitazioni)testi 1 e 2
8Elementi di termodinamica classica e teoria cinetica dei gas (8 ore, di cui 4 di esercitazioni) testi 1 e 2
9Legge di Coulomb, campo elettrico, legge di Gauss e potenziale elettrico (6 ore, di cui 2 di esercitazioni)testi 1 e 3
10Corrente elettrica (2 ore)testi 1 e 3
11Campo magnetico (2 ore, di cui 2 di esercitazioni)testi 1 e 3
12Induzione elettromagnetica ed equazioni di Maxwell (2 ore)testi 1 e 3

Learning Assessment

Learning Assessment Procedures

The evaluation will take place through a written test consisting of three simple exercises on the topics covered in the course, and an oral interview. Among the criteria for determining the final grade, correctness of the answers will be assessed, as well as the student's ability to articulate themselves using appropriate technical language and to establish connections with other topics covered in the curriculum.

Examples of frequently asked questions and / or exercises

Second Law of Dynamics

Inertial Reference Frames

First Law of Thermodynamics

Second Law of Thermodynamics

Internal Energy

Entropy

Mechanics of Point Particle Systems

Hydrostatics