Marco D'Anna

Semigruppi numerici e applicazioni

Catania - Marzo 2014

0. Definizioni e proprietà iniziali

```
Semigruppo (commutativo): (S,+), con + operazione associativa (e commutativa).
```

Monoide (commutativo): (M, +), con + operazione associativa (e commutativa) e \exists 0.

Esempio. \mathbb{N}^h è un monoide commutativo.

Definizione. $S \subseteq \mathbb{N}$ è detto semigruppo numerico se:

- sottomonoide di $(\mathbb{N}, +)$;
- $|\mathbb{N} \setminus S| < \infty$.

```
Definizione. Se S \neq \mathbb{N}, f(S) := \max(\mathbb{N} \setminus S) (numero di Frobenius)
```

Esempio. $S = \{0, 5, 7, 10, 12, 13, 14, 15, 17, \rightarrow\}$

Posso descrivere gli elementi del semigruppo in modo sintetico?

$$5 \in S \implies n \cdot 5 \in S, \ \forall n \in \mathbb{N}$$

$$7 \in S \Rightarrow 7 + n \cdot 5 \in S, \ \forall n \in \mathbb{N} \ (\text{osserviamo che } 7 \equiv 2 \ (\text{mod } 5))$$

Vado avanti: $\forall i = 0, 1, 2, 3, 4$ prendo

$$\min\{s \in S \setminus \{0\} \mid s \equiv i \pmod{5}\}$$

e ottengo {5,21,7,13,14}

$$S = \{n \cdot 5\} \cup \{21 + n \cdot 5\} \cup \{7 + n \cdot 5\} \cup \{13 + n \cdot 5\} \cup \{14 + n \cdot 5\}$$

Ma in S posso sommare tutti gli elementi tra loro; quindi

$$S = \{n_1 \cdot 5 + n_2 \cdot 7 + n_3 \cdot 13 \mid n_i \in \mathbb{N}\} =: \langle 5, 7, 13 \rangle$$

Proposizione. Ogni semigruppo numerico è finitamente generato ed ha un unico insieme minimale di generatori.

$$S = \langle g_1, g_2, \dots, g_k \rangle = \{ \sum_{i=1}^n n_i g_i \mid n_i \in \mathbb{N} \}.$$

Che proprietà devono avere i generatori perché S sia un semigruppo numerico (i.e. $|\mathbb{N} \setminus S| < \infty$)?

Teorema. $S = \langle g_1, g_2, \dots, g_k \rangle$ s.n. $\Leftrightarrow MCD(g_1, g_2, \dots, g_k) = 1$.

Dimostrazione. (\Rightarrow) Ovvia.

(\Leftarrow) Esercizio! (Sugg.: si usi l'identità di Bezout per trovare in S due elementi consecutivi; si utilizzi la divisione col resto per provare che, se $s, s+1 \in S$, allora, $\forall n \geq (s-1)s+(s-1)$, $n \in S$.)

1. Motivazioni

- Struttura semplice
 ⇒ problemi semplici.
- Interazioni con vari campi della matematica:
- teoria dei numeri (problema di Frobenius, equazioni diofantee);
- combinatoria (contare numero di punti interi in un tetraedro);
- algebra commutativa (anelli locali o graduati uno-dimensionali);
- geometria algebrica (singolarità di curve, s. di Weierstrass);
- teoria dei codici (semigruppo di Weierstrass, ordered domains);
- programmazione lineare intera;
- problemi di fattorizzazione.

Interazioni in entrambi i versi: i s.n. possono essere uno strumento per risolvere problemi o ottenere informazioni in questi settori della matematica e problemi sui s.n. possono essere affrontati con strumenti presi da questi settori.

2. Problema di Frobenius

$$S = \langle g_1, g_2, \dots, g_k \rangle \subseteq \mathbb{N}$$
, con $MCD(g_1, g_2, \dots, g_k) = 1$.

Problema. Determinare f(S) in funzione di g_1, g_2, \ldots, g_k .

• k = 2. Sylvester (1884): Sia $S = \langle a, b \rangle$, con MCD(a, b) = 1. Allora f(S) = ab - a - b.

La dimostrazione può essere fatta da uno studente del primo anno.

- k=3. Fel (2006): formula complicata, coinvolge la matrice delle relazioni, non è polinomiale.
- $k \ge 4$. Curtis (1990): non può esistere una formula polinomiale (né esplicita né implicita).

2. Congettura di Wilf

$$S = \langle g_1, g_2, \dots, g_k \rangle = \{0, s_1, s_2, \dots, s_{n-1}, s_n, \rightarrow \}; \qquad s_n = f(S) + 1$$

$$n(S) := |S \cap \{0, 1, \dots, f(S)\}|$$

k(S) :=cardinalità dell'insieme minimale di generatori.

Congettura. Wilf (1978): $k(S)n(S) \ge f(S) + 1$

Esercizio. Verificare che, per
$$S = \langle a, b \rangle$$
, vale $2n(S) = f(S) + 1 = ab - a - b + 1 = (a - 1)(b - 1)$.

La congettura è stata verificata in alcuni casi particolari, per tutti i semigruppi con numero di Frobenius \leq 50. Contributi più significativi da Sammartano $(2k(S) \geq s_1)$ e Moscariello-Sammartano (2011 e 2013).

3. Semigruppi simmetrici e anelli di Gorenstein

$$S = \langle g_1, g_2, \dots, g_k \rangle$$
, $M := S \setminus \{0\}$; K campo

$$R = K[T^{g_1}, \dots, T^{g_k}] = \{ \sum a_s T^s \mid s \in S, \ a_s \in K \}, \ \mathbf{m} = (T^{g_1}, \dots, T^{g_k}) \}$$

Osservazione. $R \subseteq K[T]$ dominio, ma non è un UFD.

Ad es.,
$$T^6 = (T^2)^3 = (T^3)^2 \in K[T^2, T^3]$$
.

Osservazione. $R \cong K[X_1, \dots, X_k]/\text{Ker}(\phi)$, dove

$$\phi: K[X_1, \dots, X_k] \longrightarrow R$$

$$X_i \longmapsto T^{g_i}$$

Osservazioni. \bullet *R* ha dimensione 1:

le uniche catene di primi sono della forma: $(0) \subset P$.

• $(T^s)(T^u) = T^{s+u}$: moltiplicazione \longrightarrow addizione.

Osservazione. Il campo delle frazioni di $R \in K(T)$:

$$T^{-1} = \frac{T^{f(S)+1}}{T^{f(S)+2}}$$

Per ogni $g(X) \in \mathfrak{m} \setminus \{0\}$ si ha:

$$t = \dim_K \left(\frac{((g) : \mathfrak{m})}{(g)} \right) = \dim_K \left(\frac{(R : \mathfrak{m})}{R} \right)$$

(dove $(I:J) = \{h \in K(T) \mid hJ \subseteq I\}$).

Definizione. R Gorenstein se t = 1. (ogni ideale (g), con $0 \neq g(X) \in \mathfrak{m}$, è irriducibile).

Proposizione.
$$t = \dim_K ((R : \mathfrak{m})/R) =$$
$$= |\{n \in \mathbb{Z} \mid T^n \in (R : \mathfrak{m}) \setminus R\}| =$$
$$= |\{n \in \mathbb{Z} \mid n + M \subseteq S, n \notin S\}|$$

Torniamo ai semigruppi:

$$S = \langle g_1, g_2, \dots, g_k \rangle = \{0, s_1, s_2, \dots, s_{n-1}, s_n, \rightarrow \};$$

 $f = f(S) = \max(\mathbb{N} \setminus S); \quad s_n = f(S) + 1; \quad M = S \setminus \{0\}$

Osservazione. $s \in S \Rightarrow f - s \notin S$ (altrimenti $f(S) = (f - s) + s \in S$; assurdo).

Definizione. S è simmetrico se $\forall x \in \mathbb{Z}$

$$x \in S \iff f - x \notin S$$

Esempio. (S non simmetrico):

$$S = \{0, 5, 7, 10, 12, 13, 14, 15, 17, \rightarrow\}; \quad f = 16$$

Torniamo ai semigruppi:

$$S = \langle g_1, g_2, \dots, g_k \rangle = \{0, s_1, s_2, \dots, s_{n-1}, s_n, \rightarrow \};$$

 $f = f(S) = \max(\mathbb{N} \setminus S); \quad s_n = f(S) + 1; \quad M = S \setminus \{0\}$

Osservazione. $s \in S \Rightarrow f - s \notin S$ (altrimenti $f(S) = (f - s) + s \in S$; assurdo).

Definizione. S è simmetrico se $\forall x \in \mathbb{Z}$

$$x \in S \iff f - x \notin S$$

Esempio. (S non simmetrico):

$$S = \{0, 5, 7, 10, 12, 13, 14, 15, 17, \rightarrow\}; \quad f = 16$$

Torniamo ai semigruppi:

$$S = \langle g_1, g_2, \dots, g_k \rangle = \{0, s_1, s_2, \dots, s_{n-1}, s_n, \rightarrow \};$$

 $f = f(S) = \max(\mathbb{N} \setminus S); \quad s_n = f(S) + 1; \quad M = S \setminus \{0\}$

Osservazione. $s \in S \Rightarrow f - s \notin S$ (altrimenti $f(S) = (f - s) + s \in S$; assurdo).

Definizione. S è simmetrico se $\forall x \in \mathbb{Z}$

$$x \in S \iff f - x \notin S$$

Esempio. (S non simmetrico):

$$S = \{0, 5, 7, 10, 12, 13, 14, 15, 17, \rightarrow\}; \quad f = 16$$

Proposizione. S simmetrico \iff

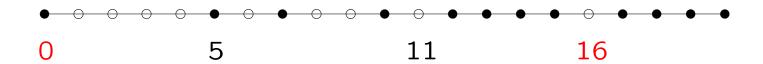
$$|S \cap \{0, 1, \dots, f\}| = |(\mathbb{N} \setminus S) \cap \{0, 1, \dots, f\}|$$

Dimostrazione. La seguente funzione è sempre ben definita e iniettiva:

$$\phi: S \cap \{0, 1, \dots, f\} \longrightarrow (\mathbb{N} \setminus S) \cap \{0, 1, \dots, f\}$$
$$n \longmapsto f - n$$

S simmetrico $\iff \phi$ suriettiva.

Nell'esempio si ha:
$$|S \cap \{0, 1, ..., f\}| = 8$$
 e $|(\mathbb{N} \setminus S) \cap \{0, 1, ..., f\}| = 9$



Poniamo $(S - M) = \{n \in \mathbb{Z} \mid n + M \subseteq S\}, \quad t = |(S - M) \setminus S|$ Osservazione. $f \in (S - M) \setminus S$ (e quindi $t \ge 1$).

Proposizione. S simmetrico $\iff t = 1$

Dimostrazione. (\Rightarrow) PA: $\exists x \in (S - M) \setminus S, x \neq f$; S simmetrico $\Rightarrow f - x \in S \Rightarrow (f - x) + x = f \in S$; assurdo.

(\Leftarrow) PA: S non simmetrico; sia $h = \max\{x \notin S \mid f - x \notin S\}$; allora, $\forall s \in M, \ h + s \in S$ (altrimenti $h + s \notin S \Rightarrow f - (h + s) = s' \in S$ e $f - h = s + s' \in S$). Dunque $h \in (S - M) \setminus S$ e t > 1; assurdo.

Teorema. Kunz (1971): $R = K[T^{g_1}, \dots, Y^{g_k}]$, $S = \langle g_1, g_2, \dots, g_k \rangle$; allora: R Gorenstein $\iff S$ simmetrico.

4. Semigruppi numerici e codici di valutazione

Sia A un alfabeto con q elementi.

Una parola di lunghezza m è un elemento di \mathcal{A}^m .

Un codice a blocchi di lunghezza m è un sottoinsieme $\mathcal{C} \subseteq \mathcal{A}^m$.

Sia $q = p^h$ (p primo) e $\mathcal{A} = \mathbb{F}_q$ (campo con q elementi).

Definizione. Codice lineare a blocchi di lunghezza m è un sottospazio $\mathcal{C} \leq (\mathbb{F}_q)^m$.

Esempio.
$$C = \{(a_1, \dots, a_m) \in (\mathbb{Z}_2)^m \mid a_1 + \dots + a_{m-1} = a_m\}.$$

L'informazione è contenuta in (a_1, \ldots, a_{m-1}) ; la componente a_m ha una funzione di controllo, per sapere se ci sono stati errori di trasmissione.

Definizione. Siano $\mathbf{v} = (v_1, \dots, v_m)$, $\mathbf{w} = (w_1, \dots, w_m)$; la distanza tra \mathbf{v} e \mathbf{w} è $d(\mathbf{v}, \mathbf{w}) := |\{i \mid v_i \neq w_i\}|$. Si definisce distanza minima di \mathcal{C} l'intero:

 $d(\mathcal{C})=\min\{d(\mathbf{v},\mathbf{w})\mid\mathbf{v}\neq\mathbf{w}\in\mathcal{C}\}=\min\{d(\mathbf{v},\mathbf{0})\mid\mathbf{v}\in\mathcal{C}\setminus\{\mathbf{0}\}\}$ (nell'esempio $d(\mathcal{C})=2$)

Proposizione. Se $\mathcal{C} \leq (\mathbb{F}_q)^m$ ha: $k = \dim_{\mathbb{F}_q}(\mathcal{C})$ e $d = d(\mathcal{C})$, allora $d \leq m-k+1$

Sia $e = \lfloor (d-1)/2 \rfloor$; allora \mathcal{C} può correggere e errori: $\mathbf{v} \in \mathcal{C}$ parola trasmessa, \mathbf{w} parola ricevuta; $d(\mathbf{v}, \mathbf{w}) \leq e \Rightarrow \mathbf{v}$ è l'unica parola di \mathcal{C} t.c. $d(\mathbf{v}, \mathbf{w}) = e$.

Il problema è avere un algoritmo efficiente che da ${\bf w}$ mi permetta di ricostruire ${\bf v}$.

Funzioni peso e codici di valutazione.

Siano R un anello commutativo e unitario, F un campo, $F \subset R$.

 $\phi: R \to \mathbb{N} \cup \{-\infty\}$ è una funzione peso se:

- $\phi(r) = -\infty \Leftrightarrow r = 0$
- $\phi(r) = 0$, $\forall r \in F$
- $\phi(r+t) \leq \max\{\phi(r),\phi(t)\}$ $(\phi(r) < \phi(t) \Rightarrow =)$
- $\phi(rt) = \phi(r) + \phi(t)$
- $\phi(r) = \phi(t) \Rightarrow \exists \lambda \in F \setminus \{0\} \text{ tale che } \phi(r \lambda t) < \phi(t).$

Osservazione. $\phi(R) := \{\phi(r) \mid r \in R \setminus \{0\}\}\$ è un sottomonoide di $(\mathbb{N}, +)$. A meno di ridefinire ϕ dividendo per il massimo comun divisore, $\phi(R)$ è un s.n.

Proposizione. Se R ha una funzione peso è un dominio; inoltre, se scelgo $r_s \in R$ tale che $\phi(r_s) = s$ ($\forall s \in \phi(R)$), $\{r_s \mid s \in \phi(R)\}$ è una base di R come F-spazio vettoriale.

Esempio. (Curva Hermitiana) $\mathcal{H}_r: X^{r+1} - Y^r - Y = 0$ in $\mathbb{A}^2(F)$

$$R = \frac{F[X,Y]}{(X^5 - Y^4 - Y)} = F[u,v]$$

$$(r=4, F=\mathbb{F}_{16}, u=\overline{X}, v=\overline{Y})$$

Poniamo $\phi(u)=4$ e $\phi(v)=5$; poiché $u^5=v^4+v$, una base di R su F è $\{u^iv^j\mid 0\leq i\leq 4,\ 0\leq j\}$.

Inoltre: $\phi(u^i v^j) = 4i + 5j$ e, poiché $0 \le i, h \le 4$, si ha $4i + 5j = 4h + 5k \Rightarrow i = h, j = k$.

Quindi ϕ è funzione peso e $\phi(R) = \langle 4, 5 \rangle = \{0, 4, 5, 8, 9, 10, 12, \to \}$

 $(\phi(R)$ è il semigruppo di Weierstrass di \mathcal{H}_4 in $P_{\infty} = (0:0:1)$

Definiamo in F^m somma e prodotto componente per componente. Si ha $F \hookrightarrow F^m$ $(1 \mapsto (1, \dots, 1))$.

Sia $\Psi: R \longrightarrow F^m$ un omomorfismo di anelli (tale che $1 \mapsto (1, \dots, 1)$).

Sia $\phi(R)=\{0=s_0,s_1,\ldots,s_n,\to\}$ e $\{r_{s_i}\mid i\in\mathbb{N}\}$ una base di R. Sia $V_l=\langle r_{s_0},\ldots,r_{s_l}\rangle_K$.

Definizione. Sia $\mathcal{E}_l = \Psi(V_l)$ e $\mathcal{C}_l = \mathcal{E}_l^{\perp}$; \mathcal{E}_l e \mathcal{C}_l sono detti l-esimi codici di valutazione.

Sia
$$N_l = \{(i, j) \in \mathbb{N}^2 \mid s_i + s_j = s_l\}$$
 e $\nu_l = |N_l|$.

Proposizione. $d(\mathcal{C}_l) \geq d(l) := \min\{\nu_m \mid m > l\}.$

Osservazioni. • d(l) dipende soltanto dalla funzione peso ϕ e non dall'omomorfismo Ψ .

- Si dimostra che questa limitazione migliora la limitazione inferiore che si ottiene (nel caso dei cosiddetti codici one-point) con teoremi profondi di geometria algebrica.
- ullet Si cercano semigruppi per cui d(l) sia facilmente calcolabile e grande.
- d(l) dipende dalle proprietà di fattorizzazione nel semigruppo: se a+b=s, allora a e b sono divisori di s. Quindi ν_l coincide con il numero di divisori di s_l .
- C'è un ottimo algoritmo di correzione d'errore che corregge fino a $\lfloor \frac{l+1-2g}{2} \rfloor$ per \mathcal{C}_l (dove $g = |(\mathbb{N} \setminus S) \cap \{0, 1, \dots, f(S)\}|)$.

Esempio.
$$R = \frac{F[X,Y]}{(X^5 - Y^4 - Y)} = F[u,v], \ \phi(u^i v^j) = 4i + 5j, \ F = \mathbb{F}_{16}.$$

La curva \mathcal{H}_4 ha 64 punti a coordinate in F. Si definisce:

$$\Psi: R \longrightarrow F^{64}$$

$$f(u,v) \longmapsto (f(P_1), \dots, f(P_{64}))$$

l	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
s_l	4	5	8	9	10	12	13	14	15	16	17	18	19	20	21
r_{s_l}	u	\overline{v}	u^2	uv	v^2	u^3	u^2v	uv^2	v^3	u^4	u^3v	u^2v^2	uv^3	v^4	u^4v
$ u_l $	2	2	3	4	3	4	6	6	4	5	8	9	8	9	10
d(l)	2	3	3	3	4	4	4	4	5	8	8	8	9	10	12

Si verifica che per l=16, $s_{16}=22$ e $\nu_{16}=12$. Inoltre, $\forall \ l>16$ si ha $\nu_l=l-5$ (e quindi d(l)=l-4).

Per l = 32 è un ottimo codice.

